Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1398462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957441

RESUMO

Background: Cannabidiol (CBD), a non-psychoactive phytocannabinoid of cannabis, is therapeutically used as an analgesic, anti-convulsant, anti-inflammatory, and anti-psychotic drug. There is a growing concern about the adverse side effects posed by CBD usage. Pregnane X receptor (PXR) is a nuclear receptor activated by a variety of dietary steroids, pharmaceutical agents, and environmental chemicals. In addition to the role in xenobiotic metabolism, the atherogenic and dyslipidemic effects of PXR have been revealed in animal models. CBD has a low affinity for cannabinoid receptors, thus it is important to elucidate the molecular mechanisms by which CBD activates cellular signaling and to assess the possible adverse impacts of CBD on pro-atherosclerotic events in cardiovascular system, such as dyslipidemia. Objective: Our study aims to explore the cellular and molecular mechanisms by which exposure to CBD activates human PXR and increases the risk of dyslipidemia. Methods: Both human hepatic and intestinal cells were used to test if CBD was a PXR agonist via cell-based transfection assay. The key residues within PXR's ligand-binding pocket that CBD interacted with were investigated using computational docking study together with site-directed mutagenesis assay. The C57BL/6 wildtype mice were orally fed CBD in the presence of PXR antagonist resveratrol (RES) to determine how CBD exposure could change the plasma lipid profiles in a PXR-dependent manner. Human intestinal cells were treated with CBD and/or RES to estimate the functions of CBD in cholesterol uptake. Results: CBD was a selective agonist of PXR with higher activities on human PXR than rodents PXRs and promoted the dissociation of human PXR from nuclear co-repressors. The key amino acid residues Met246, Ser247, Phe251, Phe288, Trp299, and Tyr306 within PXR's ligand binding pocket were identified to be necessary for the agonistic effects of CBD. Exposure to CBD increased the circulating total cholesterol levels in mice which was partially caused by the induced expression levels of the key intestinal PXR-regulated lipogenic genes. Mechanistically, CBD induced the gene expression of key intestinal cholesterol transporters, which led to the increased cholesterol uptake by intestinal cells. Conclusion: CBD was identified as a selective PXR agonist. Exposure to CBD activated PXR signaling and increased the atherogenic cholesterol levels in plasma, which partially resulted from the ascended cholesterol uptake by intestinal cells. Our study provides potential evidence for the future risk assessment of CBD on cardiovascular disease, such as dyslipidemia.


Assuntos
Canabidiol , Colesterol , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , Receptor de Pregnano X/metabolismo , Animais , Humanos , Camundongos , Canabidiol/farmacologia , Colesterol/metabolismo , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Simulação de Acoplamento Molecular
2.
Biochem Pharmacol ; : 116416, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986717

RESUMO

The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor signaling potentiates ethanol (EtOH)-induced hepatotoxicity in male mice, however, how PXR signaling modulates EtOH-induced hepatotoxicity in female mice is unknown. Wild type (WT) and Pxr-null mice received 5 % EtOH-containing diets or paired-fed control diets for 8 weeks followed by assessment of liver injury, EtOH elimination rates, histology, and gene and protein expression changes; microarray and bioinformatic analyses were also employed to identify PXR targets in chronic EtOH-induced hepatotoxicity. In WT females, EtOH ingestion significantly increased serum ethanol and alanine aminotransferase (ALT) levels, hepatic Pxr mRNA, constitutive androstane receptor (CAR) activation, Cyp2b10 mRNA and protein, oxidative stress, and endoplasmic stress (phospho-elF2α) and pro-apoptotic (Bax) protein expression. Unexpectedly, EtOH-fed female Pxr-null mice displayed increased EtOH elimination and elevated levels of hepatic acetaldehyde detoxifying aldehyde dehydrogenase 1a1 (Aldh1a1) mRNA and protein, EtOH-metabolizing alcohol dehydrogenase 1 (ADH1), and lipid suppressing microsomal triglyceride transport protein (MTP) protein, aldo-keto reductase 1b7 (Akr1b7) and Cyp2a5 mRNA, but suppressed CYP2B10 protein levels, with evidence of protection against chronic EtOH-induced oxidative stress and hepatotoxicity. While liver injury was not different between the two WT sexes, female sex may suppress EtOH-induced macrovesicular steatosis in the liver. Several genes and pathways important in retinol and steroid hormone biosynthesis, chemical carcinogenesis, and arachidonic acid metabolism were upregulated by EtOH in a PXR-dependent manner in both sexes. Together, these data establish that female Pxr-null mice are resistant to chronic EtOH-induced hepatotoxicity and unravel the PXR-dependent and -independent mechanisms that contribute to EtOH-induced hepatotoxicity.

3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928005

RESUMO

The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.


Assuntos
Toxinas Marinhas , Mytilus , Receptor de Pregnano X , Animais , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Mytilus/metabolismo , Mytilus/genética , Humanos , Microcistinas/metabolismo , Microalgas/metabolismo , Microalgas/genética , Xenobióticos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas de Cianobactérias
4.
Artigo em Inglês | MEDLINE | ID: mdl-38887973

RESUMO

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.

5.
Toxicol Lett ; 397: 79-88, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734220

RESUMO

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.


Assuntos
Proliferação de Células , Hepatócitos , Hepatomegalia , Fígado , Camundongos Endogâmicos C57BL , PPAR alfa , Receptor de Pregnano X , Pirimidinas , Proteínas de Sinalização YAP , Animais , PPAR alfa/agonistas , PPAR alfa/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Proteínas de Sinalização YAP/metabolismo , Pirimidinas/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proliferação de Células/efeitos dos fármacos , beta Catenina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Citocromo P-450 CYP4A/metabolismo , Citocromo P-450 CYP4A/genética , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Camundongos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Antígeno Ki-67/metabolismo , Proteínas de Membrana , Esteroide Hidroxilases , Família 2 do Citocromo P450 , Citocromo P-450 CYP3A , Hidrocarboneto de Aril Hidroxilases
6.
Biochem Pharmacol ; 225: 116309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788959

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, plays a critical role in the metabolism of endogenous and exogenous substances in the liver. Here, we investigate whether PXR plays a role in pathogenesis of HCC. We show that liver tumors were developed in diethylnitrosamine (DEN)-treated in PXR knockout (KO) mice. Hepatic levels of prostaglandin F2α (PGF2α) and aldo-keto reductase family 1 member C18 (Akr1c18), a prostaglandin synthase of catalyzing reduction of PGH2 to PGF2α, were significantly elevated in DEN-treated PXR KO mice. Hepatic mRNA levels of alpha fetoprotein (AFP), cyclin D1 (Ccnd1), fibroblast growth factor 21 (FGF21), and inflammatory cytokine interleukin 6 (IL-6) were significantly increased in DEN-treated PXR KO mice. Other members of Akr1c family, liver metabolizing enzymes including Cyp1a2, Cyp2b10 and Cyp3a11, and bile acid synthesis enzyme Cyp7a1 mRNA levels were significantly decreased in DEN-treated PXR KO mice. Our findings revealed that PXR deficiency promoted DEN-induced HCC in mice via induction of Akr1c18 expression and PGF2α levels and the increased PGF2α levels synthetized by Akr1c18 enhanced hepatocytes proliferation and induced inflammatory cytokine production, which accelerated liver tumor development after DEN treatment, suggesting that PXR deficiency may create a microenvironment that is more prone to DEN-induced liver tumors and targeting PXR and Akr1c18 to reduce PGF2α biosynthesis may be a potential and novel therapeutic strategy for HCC.


Assuntos
Dinoprosta , Receptor de Pregnano X , Animais , Humanos , Masculino , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/toxicidade , Dinoprosta/metabolismo , Dinoprosta/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética
7.
Adv Sci (Weinh) ; 11(25): e2308742, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654691

RESUMO

Deoxynivalenol (DON) is a prevalent toxin causing severe liver damage through hepatocellular oxidative stress. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the unique role of the xenobiotic metabolism factor pregnane X receptor (PXR) in mediating DON-induced hepatocellular oxidative stress is investigated. Treatment with the PXR agonist 3-indole-propionic acid (IPA) alleviates DON-induced oxidative stress and liver injury both in vitro and in vivo. Mechanistically, it is discovered for the first time that PXR agonist IPA directly transactivates the m6A demethylase FTO expression, leading to site-specific demethylation and decreased abundance of YTHDC1-bound Malat1 lncRNA at single-nucleotide resolution. The diminished m6A modification of Malat1 lncRNA reduces its stability and augments antioxidant pathways governed by NRF2, consequently mitigating DON-induced liver injury. Furthermore, Malat1 knockout mice exhibit decreased DON-induced liver injury, emphasizing the role of Malat1 lncRNA in oxidative stress. Collectively, the findings establish that PXR-mediated m6A-dependent Malat1 lncRNA expression determines hepatocyte oxidative stress via m6A demethylase FTO, providing valuable insights into the potential mechanisms underlying DON-induced liver injury and offers potential therapeutic strategies for its treatment.


Assuntos
Desmetilação , Camundongos Knockout , Estresse Oxidativo , Receptor de Pregnano X , RNA Longo não Codificante , Tricotecenos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Camundongos , Tricotecenos/toxicidade , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Humanos
8.
Bioorg Chem ; 147: 107354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599054

RESUMO

Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.


Assuntos
Hypericum , Simulação de Acoplamento Molecular , Floroglucinol , Receptor de Pregnano X , Hypericum/química , Receptor de Pregnano X/agonistas , Receptor de Pregnano X/metabolismo , Humanos , Floroglucinol/farmacologia , Floroglucinol/química , Floroglucinol/análogos & derivados , Relação Estrutura-Atividade , Estrutura Molecular , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Células Hep G2
9.
Cells ; 13(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667296

RESUMO

This review explores the likely clinical impact of Pregnane X Receptor (PXR) activation by vitamin K on human health. PXR, initially recognized as a master regulator of xenobiotic metabolism in liver, emerges as a key regulator influencing intestinal homeostasis, inflammation, oxidative stress, and autophagy. The activation of PXR by vitamin K highlights its role as a potent endogenous and local agonist with diverse clinical implications. Recent research suggests that the vitamin K-mediated activation of PXR highlights this vitamin's potential in addressing pathophysiological conditions by promoting hepatic detoxification, fortifying gut barrier integrity, and controlling pro-inflammatory and apoptotic pathways. PXR activation by vitamin K provides an intricate association with cancer cell survival, particularly in colorectal and liver cancers, to provide new insights into potential novel therapeutic strategies. Understanding the clinical implications of PXR activation by vitamin K bridges molecular mechanisms with health outcomes, further offering personalized therapeutic approaches for complex diseases.


Assuntos
Receptor de Pregnano X , Transdução de Sinais , Vitamina K , Humanos , Relevância Clínica , Saúde , Receptor de Pregnano X/metabolismo , Vitamina K/metabolismo
10.
Ecotoxicol Environ Saf ; 276: 116261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574644

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48 h to 10 µM SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5 µM), fluopyram (EC50=4.8 µM) and flutolanil (EC50=53.6 µM). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.


Assuntos
Citocromo P-450 CYP3A , Hepatócitos , Succinato Desidrogenase , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Hepatócitos/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/toxicidade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Linhagem Celular
11.
Adv Sci (Weinh) ; 11(19): e2308771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477509

RESUMO

Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.


Assuntos
Endotoxinas , Macrófagos , Receptor de Pregnano X , Animais , Humanos , Masculino , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Modelos Animais de Doenças , Endotoxemia/metabolismo , Endotoxemia/genética , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Transdução de Sinais , Feminino
12.
Chem Biol Interact ; 393: 110970, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513930

RESUMO

Liver regeneration after liver tumor resection or liver transplantation is crucial, the remaining liver frequently fails to regenerate in some patients. Oleanolic acid (OA), a pentacyclic triterpenoid compound which has been shown to protect against various liver diseases. However, the effect of OA on liver regeneration after partial hepatectomy (PHx) is still unclear. In this study, the results showed that OA (50 mg/kg, twice daily) treatment induced liver mass restoration and increased the liver-to-body weight ratio of mice following PHx. Meanwhile, OA promoted hepatocyte proliferation and increased the number of BrdU-, Ki67-and PCNA-positive cells. Furthermore, OA increased the nuclear accumulation of PXR and induced the expression of PXR downstream proteins such as CYP3A11, UGT1A1 and GSTM2 in mice, as well as in AML12 and HepRG cells. Luciferase reporter assay and nuclear localization of PXR further demonstrated the effect of OA on PXR activation in vitro. Molecular docking simulation showed that OA could interact with the PXR active sites. Moreover, OA inhibited the expression of FOXO1, RBL2 and CDKN1B, and increased the expression of PCNA, CCND1 and CCNE1 in vivo and in vitro. Silencing of Pxr further confirmed that OA-mediated upregulation of proliferation-related proteins depended on PXR. The current study illustrated that OA exhibited a significant promoting effect on liver regeneration following PHx, potentially through regulation of the PXR signaling pathway to accelerate liver recovery.


Assuntos
Hepatectomia , Ácido Oleanólico , Humanos , Camundongos , Animais , Regeneração Hepática , Receptor de Pregnano X/metabolismo , Ácido Oleanólico/farmacologia , Hepatócitos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Simulação de Acoplamento Molecular , Fígado , Transdução de Sinais , Camundongos Endogâmicos C57BL
13.
Pharmacol Res ; 202: 107121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431091

RESUMO

Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.


Assuntos
Reabsorção Óssea , Clostridium , Osteoclastos , Propionatos , Humanos , Feminino , Camundongos , Animais , Osteoclastos/metabolismo , Receptor de Pregnano X/metabolismo , Reabsorção Óssea/metabolismo , Osteogênese , Estrogênios/metabolismo , Indóis/metabolismo , Hidrogéis , Ligante RANK/metabolismo , Diferenciação Celular
14.
Biomed Pharmacother ; 173: 116341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428309

RESUMO

Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.


Assuntos
Dieta Hiperlipídica , Fígado , Masculino , Feminino , Camundongos , Animais , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Aumento de Peso , Obesidade/metabolismo , Inflamação/metabolismo , Camundongos Knockout
15.
Expert Opin Drug Metab Toxicol ; 20(1-2): 9-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38251638

RESUMO

INTRODUCTION: Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED: We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION: Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.


Assuntos
Receptores de Esteroides , Humanos , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/metabolismo , Inativação Metabólica , Inflamação
16.
Fluids Barriers CNS ; 21(1): 5, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200564

RESUMO

BACKGROUND: Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS: We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS: We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION: Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.


Assuntos
Infecções por HIV , Transtornos Relacionados ao Uso de Substâncias , Humanos , Barreira Hematoencefálica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Células Endoteliais , Proteínas de Neoplasias , Proteínas de Membrana Transportadoras , Sistema Nervoso Central , Tenofovir , Infecções por HIV/tratamento farmacológico , Pregnanos
17.
Drug Metab Dispos ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296653

RESUMO

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiological and pathological conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biological functions. Till now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithms tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, CYP3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. Significance Statement PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.

18.
Bioorg Chem ; 144: 107137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245951

RESUMO

Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.


Assuntos
Colite , Humanos , Animais , Camundongos , Receptor de Pregnano X/agonistas , Células CACO-2 , Colite/induzido quimicamente , Receptores Citoplasmáticos e Nucleares , Anti-Inflamatórios/uso terapêutico
19.
J Biomol Struct Dyn ; 42(2): 903-917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37059719

RESUMO

Pregnane X receptor (PXR), extensively expressed in human tissues related to digestion and metabolism, is responsible for recognizing and detoxifying diverse xenobiotics encountered by humans. To comprehend the promiscuous nature of PXR and its ability to bind a variety of ligands, computational approaches, viz., quantitative structure-activity relationship (QSAR) models, aid in the rapid dereplication of potential toxicological agents and mitigate the number of animals used to establish a meaningful regulatory decision. Recent advancements in machine learning techniques accommodating larger datasets are expected to aid in developing effective predictive models for complex mixtures (viz., dietary supplements) before undertaking in-depth experiments. Five hundred structurally diverse PXR ligands were used to develop traditional two-dimensional (2D) QSAR, machine-learning-based 2D-QSAR, field-based three-dimensional (3D) QSAR, and machine-learning-based 3D-QSAR models to establish the utility of predictive machine learning methods. Additionally, the applicability domain of the agonists was established to ensure the generation of robust QSAR models. A prediction set of dietary PXR agonists was used to externally-validate generated QSAR models. QSAR data analysis revealed that machine-learning 3D-QSAR techniques were more accurate in predicting the activity of external terpenes with an external validation squared correlation coefficient (R2) of 0.70 versus an R2 of 0.52 in machine-learning 2D-QSAR. Additionally, a visual summary of the binding pocket of PXR was assembled from the field 3D-QSAR models. By developing multiple QSAR models in this study, a robust groundwork for assessing PXR agonism from various chemical backbones has been established in anticipation of the identification of potential causative agents in complex mixtures.


Assuntos
Relação Quantitativa Estrutura-Atividade , Receptores de Esteroides , Humanos , Receptor de Pregnano X , Receptores de Esteroides/química , Aprendizado de Máquina , Misturas Complexas
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2485-2496, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851058

RESUMO

Rifampicin and rifabutin can activate the pregnane X receptor (PXR, NR1I2), thereby inducing pharmacokinetically important genes/proteins and reducing exposure to co-administered drugs. Because induction effects vary considerably between these antibiotics, differences could be due to unequal rifamycin-induced activation or tissue expression of the three major NR1I2 splice variants, PXR.1 (NM_003889), PXR.2 (NM_022002), and PXR.3 (NM_033013). Consequently, PXR activation (PXR reporter gene assays) and mRNA expression levels of total NR1I2, PXR.1, PXR.2, and PXR.3 were investigated by polymerase chain reaction in colon and liver samples from eleven surgical patients, in LS180 cells, and primary human hepatocytes. Compared to the colon, total NR1I2 mRNA expression was higher in the liver. Both tissues showed similar expression levels of PXR.1 and PXR.3, respectively. PXR.2 was not quantifiable in the colon samples. Rifampicin and rifabutin similarly enhanced PXR.1 and PXR.2 activity when transfected into LS180 cells, while PXR.3 could not be activated. In LS180 cells, rifampicin (10 µM) reduced total NR1I2 and PXR.3 expression 2-fold after 24 h, while rifabutin (10 µM) increased total NR1I2, PXR.1, PXR.2, and PXR.3 mRNA by approx. 50% after 96-h exposure. In primary human hepatocytes, rifampicin (10 µM) suppressed total NR1I2, PXR.1, and PXR.3 after 48-h exposure, and rifabutin (10 µM) had no significant impact on total NR1I2 or any of the splice variants studied. In conclusion, both antibiotics activated the studied PXR splice variants similarly but modified their expression differently. While rifampicin can suppress mRNA of PXR forms, rifabutin rather increases their expression levels.


Assuntos
Receptores de Esteroides , Rifampina , Humanos , Receptor de Pregnano X , Rifampina/farmacologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifabutina , Antibacterianos , RNA Mensageiro , Citocromo P-450 CYP3A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...