Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Foods ; 11(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36360149

RESUMO

Grape pomace (GP) is a source of polyphenols which may be present as free structures or associated with dietary fiber. Instant controlled pressure drop (DIC) is a technology which can modify the association of polyphenols with food matrixes, but how these modifications affect the health benefits associated with GP remains to be elucidated. In this study, in rats fed a high-fat-fructose diet (HFF), we evaluated the in vivo cardiometabolic effects of the modification of polyphenols in GP caused by DIC at 0.2 MPa for 60 s (DIC1) and 0.4 MPa for 120 s (DIC2). These treatments increased anthocyanin and total flavonoid contents, respectively, while all the supplementations caused significant improvements in insulin resistance and plasma triacylglycerols. Thus, the bioactive compounds present in GP (including a major fraction of non-extractable proanthocyanidins) caused these modifications independently of the specific polyphenol profiles which may have resulted from these DIC treatments. Additionally, only intact GP led to an increase in HDL cholesterol, while only DIC2-treated GP improved hepatic steatosis. In conclusion, GP always improves insulin sensitivity in this animal model of obesity, while the different compositions of GP modified by DIC may be associated with other cardiometabolic parameters.

2.
Materials (Basel) ; 15(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234220

RESUMO

Nanofluids can be employed as one of the two fluids needed to improve heat exchanger performance due to their improved thermal and rheological properties. In this review, the impact of nanoparticles on nanofluid properties is discussed by analyzing factors such as the concentration, size, and shape of nanoparticles. Nanofluid thermophysical properties and flow rate directly influence the heat transfer coefficient and pressure drop. High thermal conductivity nanoparticles improve the heat transfer coefficient; in particular, metallic oxide (such as MgO, TiO2, and ZnO) nanoparticles show greater enhancement of this property by up to 30% compared to the base fluid. Nanoparticle size and shape are other factors to consider as well, e.g., a significant difference in thermal conductivity enhancement from 6.41% to 9.73% could be achieved by decreasing the Al2O3 nanoparticle size from 90 to 10 nm, affecting nanofluid viscosity and density. In addition, equations to determine the heat transfer rate and the pressure drop in a double-pipe heat exchanger are presented. It was established that the main factor that directly influences the heat transfer coefficient is the nanofluid thermal conductivity, and nanofluid viscosity affects the pressure drop.

3.
Foods ; 11(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892803

RESUMO

Swell-Drying operation (SD) was applied on mangoes to evaluate its effect on drying kinetics: starting accessibility (δW), apparent drying coefficient (Dapp), and time to obtain a final moisture content of 20% d.b (tf = 20% d.b). Swell-drying consisted of (1) submitting fresh mangoes to a first pre-drying stage under Convective Air Drying (CAD) until a moisture content of 37% d.b; (2) applying Instant Controlled Pressure Drop (DIC) treatments on pre-dried mangoes by following a central composite rotatable design (steam pressure: 0.2-0.6 MPa and treatment time: 5 and 55 s); and (3) apply post-drying of mangoes under CAD. In both cases, CAD was performed at 60 °C and airflow of 1 m/s. Results showed that both the treatment time and the steam pressure impacted the Dapp and the δW. By comparing to the control, SD (0.54 MPa and 48 s) increased the Dapp and δW to 12.2 and 2.7 times, respectively. Moreover, SD triggers a significant reduction in post-drying time (tf = 20% d.b), being this of 2.4 h vs. 30.8 h. These results could be linked to the expansion of the internal pores of mangoes generated by the instant autovaporization of residual water triggered by DIC treatment.

4.
Foods ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885392

RESUMO

Maize is one of the three worldwide cereal crops with the most outstanding production; however, its postharvest losses range from 2 to 40% due to inadequate harvesting, drying, and storage technologies. This study focuses on the Instant Controlled Pressure Drop technology (DIC) effect on maize kernels' drying and rehydration kinetics. In total, 19 different DIC treatments were carried out on maize kernels (~25% d.b.). The DIC parameters studied were steam pressure (0.1 to 0.4 MPa) and treatment time (10 to 90 s). After DIC treatment, drying kinetics were carried out by Convective Air Drying (CAD) at 50 °C and 0.4 ms-1 airflow. Rehydration kinetics and Water Holding Capacity (WHC) were evaluated at 20 °C. In comparison to CAD samples, DIC (0.4 MPa and 90 s) reduced the drying time from 180 min to ~108 min. Additionally, regarding the rehydration and WHC results, DIC achieved the same moisture content in only 3.5 min that controls achieved after 1 h of rehydration (0.40 g H2O/g dry matter). Moreover, DIC (0.4 MPa and nine cycles of 10 s) increased the WHC 2.3 times compared to the control. In this way, DIC could be a postharvest technology to improve maize kernels' drying operations and functional properties.

5.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684370

RESUMO

Green cardamom (Elettaria cardamomum) is an outspread spice native to Asia, which is well appreciated for its sensory characteristics, delicate aroma, and unique taste. Currently, the main cardamom extracts are essential oils (EOs), and regarding current market tendencies, this market is in high growth. For this reason, technologies such as the instant controlled pressure drop (DIC) have been applied to reach higher yields and better quality of EO. Then, this study explores the impact of DIC as a pretreatment before hydrodistillation (HD) on the EO yield and their antioxidant activity. Obtained results showed that the coupling of DIC-HD increased the yield of essential oil and also had a positive impact on their antioxidant capacity. The EO yield of DIC-HD (140 °C and 30 s) was 4.43% vs. 2.52% for control; the AOX of DIC-HD (165 °C and 30 s) was 86% inhibition vs. 57.02% for control, and the TEAC of DIC-HD (140 °C and 30 s) was 1.44 uMTE/g EO vs. 13.66 uMTE/g EO.


Assuntos
Elettaria , Óleos Voláteis , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Tecnologia
6.
J Agric Food Chem ; 70(23): 6911-6921, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34761923

RESUMO

Instant controlled pressure drop (DIC) is a technology able to modify the polyphenol profile in vegetal materials. However, information about how polyphenols are transformed, particularly regarding non-extractable polyphenol (NEPP), as well as the association with the initial content of polyphenols of the material is scarce. Thus, this work aimed to evaluate the DIC effect, modifying the pressure (0.2 and 0.4 MPa), the number of cycles (2 and 4), and grape pomace material (Malbec, Merlot, and Syrah) on extractable polyphenol (EPP) and NEPP contents. The EPP content increased during DIC application, an effect associated with the pressure, cycles, and initial polyphenol content. While for extractable and non-extractable proanthocyanidin contents, the main factors explaining the DIC effect are the pressure and number of cycles. Therefore, changes in polyphenols from grape pomace by DIC treatment are dependent upon experimental conditions, but the origin of the grape pomace also influences the extraction of EPP.


Assuntos
Vitis , Antioxidantes , Frutas , Fenóis , Extratos Vegetais , Polifenóis
7.
Food Chem ; 360: 130035, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34029922

RESUMO

Instant controlled pressure drop (DIC) has been used as a pre-treatment to increase extractable polyphenols (EPP), mainly attributed to matrix structure expansion. This work aimed to evaluate the effect of DIC on non-extractable polyphenols (NEPP), EPP, and dietary fiber on grape pomace. At 0.2 MPa-60 s was observe an increase of total EPP and total anthocyanins. Despite the increment of EPP, was observe the lowest anthocyanins and non-extractable proanthocyanidins content at 0.4 MPa-120 s. This increase was due to a partial transformation of anthocyanins into phenolic acids and the depolymerization of proanthocyanidins. Also was observe partial solubilization of insoluble dietary fiber. Morphologically, the size of the pores generated by DIC was more significant at higher pressures. Thus, DIC modified the morphology and profile of the polyphenols of grape pomace, producing phenolic compounds of simpler structure and improving their antioxidant capacities.


Assuntos
Fibras na Dieta/análise , Polifenóis/análise , Vitis/química , Antocianinas/análise , Antioxidantes/química , Frutas/química , Fenóis/análise , Extratos Vegetais/química , Proantocianidinas/análise
8.
Comput Methods Programs Biomed ; 201: 105944, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33535083

RESUMO

In post-operative scenarios of arterial graft surgeries to bypass coronary artery stenosis, fluid dynamics plays a crucial role. Problems such as intimal hyperplasia have been related to fluid dynamics and wall shear stresses near the graft junction. This study focused on the question of the use of Newtonian and non-Newtonian models to represent blood in this type of problem in order to capture important flow features, as well as an analysis of the performance of geometry from the view of Constructive Theory. The objective of this study was to investigate the effects rheology on the steady-state flow and on the performance of a system consisting of an idealized version of a partially obstructed coronary artery and bypass graft. The Constructal Design Method was employed with two degrees of freedom: the ratio between bypass and artery diameters and the junction angle at the bypass inlet. The flow problem was solved numerically using the Finite Volume Method with blood modeled employing the Carreau equation for viscosity. The Computational Fluid Dynamics model associated with the Sparse Grid method generated eighteen response surfaces, each representing a severe stenosis degree of 75% for specific combinations of rheological parameters, dimensionless viscosity ratio, Carreau number and flow index at two distinct Reynolds numbers of 150 and 250. There was a considerable dependence of the pressure drop on rheological parameters. For the two Reynolds numbers studied, the Newtonian case presented the lowest value of the dimensionless pressure drop, suggesting that the choice of applying Newtonian blood may underestimate the value of pressure drop in the system by about 12.4% (Re =150) and 7.8% (Re = 250). Even so, results demonstrated that non-Newtonian rheological parameters did not influence either the shape of the response surfaces or the optimum bypass geometry, which consisted of a diameter ratio of 1 and junction angle of 30°. However, the viscosity ratio and the flow index had the greatest impact on pressure drop, recirculation zones and wall shear stress. Rheological parameters also affected the recirculation zones downstream of stenosis, where intimal hyperplasia is more prevalent. Newtonian and most non-Newtonian results had similar wall shear stresses, except for the non-Newtonian case with high viscosity ratio. In the view of Constructal Design, the geometry of best performance was independent of the rheological model. However, rheology played an important role on pressure drop and flow dynamics, allowing the prediction of recirculation zones that were not captured by a Newtonian model.


Assuntos
Vasos Coronários , Hidrodinâmica , Velocidade do Fluxo Sanguíneo , Modelos Cardiovasculares , Reologia , Estresse Mecânico , Viscosidade
9.
Heliyon ; 6(12): e05705, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344793

RESUMO

Low liquid-loading flow frequently occurs during the transport of gas products in various industries, such as in the Oil & Gas, the Food, and the Pharmaceutical Industries. Even small amounts of liquid can have a significant effect on the flow conditions inside the pipeline, such as increased pressure loss, pipe wall stresses and corrosion, and liquid holdup along the pipeline. However, most studies that analyze this type of flow only use atmospheric pressures and horizontal 1-in or 2-in pipes, which do not accurately represent the range of operating conditions present in industrial applications. Therefore, this study focused on modeling low liquid-loading flow in medium-sized (6-10 in) pipes, using CFD simulations and experimental data from the University of Tulsa, and then applying it to real operating conditions from a Colombian gas pipeline. An acceptable difference was observed between experimental and CFD data, both for the liquid holdup (18%) and for the pressure drop (12%). Variables like pressure drop and wall shear stress increase with phase velocity, operating pressure, and pipe inclination. Liquid holdup increases with liquid velocity but decreases with all other factors. The relation of flow variables with phase velocities is of particular interest: Doubling the gas velocity decreased holdup 70% and increased pressure drop tenfold. On the other hand, the presence of the liquid phase seems to be more influential on process variables than its exact flowrate; the introduction of the liquid phase to a single-phase gas causes an increase in pressure loss by a factor of three, but doubling the liquid velocity only increases the pressure loss by a further 30%.

10.
CienciaUAT ; 14(2): 146-159, ene.-jun. 2020. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1124390

RESUMO

Resumen La descripción del comportamiento de un flujo bifásico, a través de lechos porosos, por medio de modelos, basados en las ecuaciones de fenómenos de transporte, se dificulta debido a la irregularidad geométrica de los canales que se forman entre las partículas sólidas que constituyen el lecho. Los modelos deterministas desarrollados para flujos monofásicos requieren del ajuste de constantes empíricas y no pueden extrapolarse a flujos bifásicos, donde el patrón de flujo generado en el sistema influye significativamente sobre el comportamiento del flujo total y las pérdidas de presión por fricción. Por lo anterior, en este trabajo se presenta un modelo para describir el comportamiento del flujo bifásico en función del patrón de flujo y de la morfología, las dimensiones y las condiciones de operación del lecho poroso, cuya obtención se basó en un formalismo, empleando conjuntamente las ecuaciones de conservación de la cantidad de movimiento, la geometría fractal y el cálculo diferencial fraccional. El modelo predice que, para una misma composición del flujo bifásico, el patrón de flujo influye significativamente sobre las pérdidas de presión por fricción, habiendo un incremento cuando una de las fases se encuentra dispersa en el seno de la otra. Por otro lado, el incremento de la dimensión fractal de los poros causa a su vez un incremento de las pérdidas de presión por fricción. El modelo presenta limitaciones asociadas a las consideraciones establecidas durante su obtención, de tal manera que sólo es válido cuando los efectos de la tensión superficial son más significativos que los gravitatorios, despreciándose los efectos de esos últimos sobre el patrón de flujo, así como para el estado estacionario.


Abstract The description of the behavior of a biphasic flow through porous beds by means of models based on the equations of transport phenomena is made difficult due to the geometric irregularity of the channels that are formed between the solid particles that make up the bed. Deterministic models developed for single-phase flows require the adjustment of empirical constants and cannot be extrapolated to biphasic flows, where the flow pattern generated in the system significantly influences the behavior of the total flow and the frictional pressure losses. Therefore, in this paper, we present a model to describe the behavior of the biphasic flow in relation to the flow pattern and the morphology, dimensions, and operating conditions of the porous bed, whose obtainment was based on a hierarchy that used the equations for conservation of momentum, fractal geometry and fractional differential calculus jointly. The model predicts that, for the same composition of the biphasic flow, the flow pattern significantly influences friction pressure losses, with an increase when one of the phases is dispersed within the other. On the other hand, the increase in the fractal dimension of the pores, in turn, causes an increase in pressure loss due to friction. The model has limitations associated with the considerations established during its collection, since it is only valid when the effects of surface tension are more significant than the gravitational effects, the effects of the latter being disregarded on the flow pattern, as well as for the stationary state.

11.
Molecules ; 25(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213962

RESUMO

The common bean is an important caloric-protein food source. However, its nutritional value may be affected by the presence of non-nutritional compounds, which decrease the assimilation of some nutrients; however, at low concentrations, they show a beneficial effect. Germination and treatment by controlled pressure-drop (DIC, French acronym of Détente Instantanée Contrôlée) are methods that modify the concentration of these components. The objective of this work was to evaluate the change in the non-nutritional composition of bean seeds and sprouts by DIC treatment. The results show that with the germination, the concentration of phenolic and tannin compounds increased 99% and 73%, respectively, as well as the quantity of saponins (65.7%), while phytates and trypsin inhibitors decreased 26% and 42%, respectively. When applying the DIC treatment, the content of phytates (23-29%), saponins (44%) and oligosaccharides increased in bean sprouts and decreased phenolic compounds (4-14%), tannins (23% to 72%), and trypsin inhibitors (95.5%), according to the pressure and time conditions applied. This technology opens the way to new perspectives, especially to more effective use of legumes as a source of vegetable protein or bioactive compounds.


Assuntos
Phaseolus/metabolismo , Sementes/metabolismo , Germinação/fisiologia , Oligossacarídeos/metabolismo , Phaseolus/fisiologia , Fenóis/metabolismo , Ácido Fítico/metabolismo , Sementes/fisiologia , Inibidores da Tripsina/metabolismo
12.
Heliyon ; 5(7): e02032, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31334374

RESUMO

The formation of scales in the petroleum industry, such as those composed of calcium and barium sulfates, may reduce productivity since these sediments can partially or totally obstruct the pipes. The mitigation of these inorganic precipitates can be accomplished by using scale inhibitors or by non-intrusive physical technologies. Here, we investigated the influence of magnetic field on the incrustations of barium sulfate by analyzing the concentration of barium and sulfate ions, the solution flow rate, the capillary tube geometry, and the magnetic field intensity in a homemade experimental unit supported on the monitoring of the dynamic differential pressure. The results show that the saline concentration and the flow rate of the solutions and the geometry of the capillary tube have a significant influence on the dynamics of barium sulfate incrustation. The presence of the magnetic field tends to prolong the induction time of the barium sulfate precipitation. A semi-empirical model was used to describe the effect of the studied variables on the barium sulfate incrustation behavior. The X-ray diffraction data of the precipitated particles analyzed using the Rietveld method suggest that the use of the magnetic field favor the formation of more crystalline particles and with smaller crystallite size than those formed in the absence of a magnetic field. Optical and scanning electron microscopy measurements also corroborate with these findings. The results from this study suggest that magnetic fields can be of interest in practical crystallization processes of barium sulfate and successfully applied to decrease the speed of barium sulfate incrustation in pipelines.

13.
Molecules ; 25(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905949

RESUMO

Legumes are widely consumed by humans, being an important source of nutrients; however, they contain non-nutritional factors (NNFs), such as phytic acid (IP6), raffinose, stachyose, total phenolic compounds, condensed tannins, and flavonoids, that have negative effects on human health. Although vetches (Vicia sativa) are widely cultivated, they are not intended for human feeding due to their contents of NNF. Usually, the NNF are removed by cooking or germinating; however, germination is a process that requires extended time, and cooking may compromise the viability of some nutrients. To promote vetches for human consumption, the effect of the Instant Controlled Pressure Drop (DIC) process was studied as an alternative to cooking and germinating to decrease NNF contents. Results showed that compared to raw vetches, DIC treatment reduced total phenolic compounds (48%), condensed tannins (28%), flavonoids (65%), IP6 (92%), raffinose (77%), and stachyose (92%). These results are very similar to the ones achieved by traditional ways of removing NNF.


Assuntos
Manipulação de Alimentos/métodos , Sementes/química , Vicia sativa/fisiologia , Culinária , Flavonoides/análise , Germinação , Valor Nutritivo , Oligossacarídeos/análise , Fenóis/análise , Proantocianidinas/análise , Rafinose/análise , Vicia sativa/química
14.
Appl Microbiol Biotechnol ; 100(24): 10637-10647, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27722915

RESUMO

The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H2S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O3) and hydrogen peroxide (H2O2). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m-3 h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m-3 h-1 of O3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m-3 h-1 (81 % RE) and 15.8 g m-3 h-1 (97 % RE) for MeOH and H2S, respectively. After O3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O3 load of 4.8 ± 0.1 g m-3 h-1 for 7 days, followed by H2O2 addition for 23 days, registering 607.5 gbiomass L-1packing before and 367.5 gbiomass L-1packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O3 was present while the fungal population was less affected.


Assuntos
Poluentes Atmosféricos/metabolismo , Anti-Infecciosos/metabolismo , Filtração/métodos , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Metanol/metabolismo , Ozônio/metabolismo , Biomassa , Microbiologia Ambiental
15.
Sci. agric ; 59(4)2002.
Artigo em Português | LILACS-Express | VETINDEX | ID: biblio-1496243

RESUMO

The spouted and fluidized bed technologies are usually employed in operations of drying, coating and granulation of particles by the chemical and pharmaceutical industries. The use of these techniques in agronomy is limited to the treatment of some species of seeds. In this work, the objective was to analyse the fluid-dynamics of fluidized and spouted beds when broccoli (Brassica oleracea L. var. Italica) seeds are used and also to verify the influence on seed germination after 60 min of seed exposition to spouting or fluidization, at room temperature. The fluid-dynamics was defined by the measurements of the bed pressure drop as a function of the air flow rate for different seeds loads. The experimental conditions were based on the physical properties of the seeds and were limited by the apparatus dimensions. The cone-cylindrical bed was constructed in plexyglass to permit flow visualization. The values of the parameters: maximum pressure drop, minimum spouting flow rate and pressure drop, and stable spout pressure drop were experimentally obtained from the fluid-dynamic analysis and were compared with the values calculated by empirical equations found in the literature. The same procedure was carried out with the fluidized bed and the important parameters for this regime were the air velocity and the bed pressure drop at minimum fluidization. The analysis of seed germination indicated that no damage was caused to the seeds by the spout or fluidization processes.


Os processos em leito fluidizado e de jorro são comumente empregados para secagem, recobrimento e granulação de sistemas particulados nas indústrias química e farmacêutica, enquanto na área agronômica estão limitados a tratamento de algumas espécies de sementes. Este trabalho objetivou apresentar a análise fluidodinâmica dos leitos fluidizado e de jorro, quando são utilizadas sementes de brócolos (Brassica oleracea L. var. Italica) e verificar a influência na germinação das sementes, submetidas aos dois tipos de processo por 60 min à temperatura do ar de 25°C. A fluidodinâmica nos dois tipos de contato, leitos fluidizado e de jorro, foi estabelecida pelas medidas da queda de pressão no leito e vazões de ar crescentes e decrescentes, para diferentes cargas de sementes. As condições experimentais foram baseadas nas análises das propriedades físicas das sementes e limitadas às dimensões do equipamento de laboratório. O leito cone-cilíndrico foi projetado e construído em acrílico, para permitir a visualização do processo. Os valores de queda de pressão máxima, vazão de jorro mínimo, vazão de jorro estável e queda de pressão no mínimo jorro foram obtidos a partir dos gráficos de queda de pressão-vazão para o leito de jorro. Estes valores foram comparados aos correspondentes valores obtidos por equações empíricas citadas na literatura. O mesmo procedimento foi realizado para o leito fluidizado obtendo-se os valores para velocidade de mínima fluidização e queda de pressão na mínima fluidização. Não houve danos à germinação das sementes que participaram dos processos.

16.
Sci. agric. ; 59(4)2002.
Artigo em Português | VETINDEX | ID: vti-439687

RESUMO

The spouted and fluidized bed technologies are usually employed in operations of drying, coating and granulation of particles by the chemical and pharmaceutical industries. The use of these techniques in agronomy is limited to the treatment of some species of seeds. In this work, the objective was to analyse the fluid-dynamics of fluidized and spouted beds when broccoli (Brassica oleracea L. var. Italica) seeds are used and also to verify the influence on seed germination after 60 min of seed exposition to spouting or fluidization, at room temperature. The fluid-dynamics was defined by the measurements of the bed pressure drop as a function of the air flow rate for different seeds loads. The experimental conditions were based on the physical properties of the seeds and were limited by the apparatus dimensions. The cone-cylindrical bed was constructed in plexyglass to permit flow visualization. The values of the parameters: maximum pressure drop, minimum spouting flow rate and pressure drop, and stable spout pressure drop were experimentally obtained from the fluid-dynamic analysis and were compared with the values calculated by empirical equations found in the literature. The same procedure was carried out with the fluidized bed and the important parameters for this regime were the air velocity and the bed pressure drop at minimum fluidization. The analysis of seed germination indicated that no damage was caused to the seeds by the spout or fluidization processes.


Os processos em leito fluidizado e de jorro são comumente empregados para secagem, recobrimento e granulação de sistemas particulados nas indústrias química e farmacêutica, enquanto na área agronômica estão limitados a tratamento de algumas espécies de sementes. Este trabalho objetivou apresentar a análise fluidodinâmica dos leitos fluidizado e de jorro, quando são utilizadas sementes de brócolos (Brassica oleracea L. var. Italica) e verificar a influência na germinação das sementes, submetidas aos dois tipos de processo por 60 min à temperatura do ar de 25°C. A fluidodinâmica nos dois tipos de contato, leitos fluidizado e de jorro, foi estabelecida pelas medidas da queda de pressão no leito e vazões de ar crescentes e decrescentes, para diferentes cargas de sementes. As condições experimentais foram baseadas nas análises das propriedades físicas das sementes e limitadas às dimensões do equipamento de laboratório. O leito cone-cilíndrico foi projetado e construído em acrílico, para permitir a visualização do processo. Os valores de queda de pressão máxima, vazão de jorro mínimo, vazão de jorro estável e queda de pressão no mínimo jorro foram obtidos a partir dos gráficos de queda de pressão-vazão para o leito de jorro. Estes valores foram comparados aos correspondentes valores obtidos por equações empíricas citadas na literatura. O mesmo procedimento foi realizado para o leito fluidizado obtendo-se os valores para velocidade de mínima fluidização e queda de pressão na mínima fluidização. Não houve danos à germinação das sementes que participaram dos processos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA