Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Pharmacol Ther ; 259: 108668, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782121

RESUMO

Botulinum neurotoxins (BoNTs) are a family of neurotoxins produced by Clostridia and other bacteria that induce botulism. BoNTs are internalized into nerve terminals at the site of injection and cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins to inhibit the vesicular release of neurotransmitters. BoNTs have been approved for multiple therapeutic applications, including the treatment of migraines. They have also shown efficacies for treating neuropathic pain, such as diabetic neuropathy, and postherpetic and trigeminal neuralgia. However, the mechanisms underlying BoNT-induced analgesia are not well understood. Peripherally administered BoNT is taken up by the nerve terminals and reduces the release of glutamate, calcitonin gene-related peptide, and substance P, which decreases neurogenic inflammation in the periphery. BoNT is retrogradely transported to sensory ganglia and central terminals in a microtubule-dependent manner. BoNTs decrease the expression of pronociceptive genes (ion channels or cytokines) from sensory ganglia and the release of neurotransmitters and neuropeptides from primary afferent central terminals, which likely leads to decreased central sensitization in the dorsal horn of the spinal cord or trigeminal nucleus. BoNT-induced analgesia is abolished after capsaicin-induced denervation of transient receptor potential vanilloid 1 (TRPV1)-expressing afferents or the knockout of substance P or the neurokinin-1 receptor. Although peripheral administration of BoNT leads to changes in the central nervous system (e.g., decreased phosphorylation of glutamate receptors in second-order neurons, reduced activation of microglia, contralateral localization, and cortical reorganization), whether such changes are secondary to changes in primary afferents or directly mediated by trans-synaptic, transcytotic, or the hematogenous transport of BoNT is controversial. To enhance their therapeutic potential, BoNTs engineered for specific targeting of nociceptive pathways have been developed to treat chronic pain. Further mechanistic studies on BoNT-induced analgesia can enhance the application of native or engineered BoNTs for neuropathic pain treatment with improved safety and efficacy.


Assuntos
Toxinas Botulínicas , Neuralgia , Animais , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Humanos , Toxinas Botulínicas/farmacologia , Analgesia/métodos , Analgésicos/farmacologia
2.
J Neurosci ; 44(3)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233220

RESUMO

Spinal cord injury (SCI) is devastating, with limited treatment options and variable outcomes. Most in vivo SCI research has focused on the acute and early post-injury periods, and the promotion of axonal growth, so little is understood about the clinically stable chronic state, axonal growth over time, and what plasticity endures. Here, we followed animals into the chronic phase following SCI, to address this gap. Male macaques received targeted deafferentation, affecting three digits of one hand, and were divided into short (4-6 months) or long-term (11-12 months) groups, based on post-injury survival times. Monkeys were assessed behaviorally, where possible, and all exhibited an initial post-injury deficit in manual dexterity, with gradual functional recovery over 2 months. We previously reported extensive sprouting of somatosensory corticospinal (S1 CST) fibers in the dorsal horn in the first five post-injury months. Here, we show that by 1 year, the S1 CST sprouting is pruned, with the terminal territory resembling control animals. This was reflected in the number of putatively "functional" synapses observed, which increased over the first 4-5 months, and then returned to baseline by 1 year. Microglia density also increased in the affected dorsal horn at 4-6 months and then decreased, but did not return to baseline by 1 year, suggesting refinement continues beyond this time. Overall, there is a long period of reorganization and consolidation of adaptive circuitry in the dorsal horn, extending well beyond the initial behavioral recovery. This provides a potential window to target therapeutic opportunities during the chronic phase.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Animais , Masculino , Corno Dorsal da Medula Espinal , Mãos , Primatas , Medula Espinal , Tratos Piramidais
3.
J Neurophysiol ; 130(6): 1567-1577, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964756

RESUMO

Thermal sensitivity is not uniform across the skin, and is particularly high in small (∼1 mm2) regions termed "thermosensitive spots." These spots are thought to reflect the anatomical location of specialized thermosensitive nerve endings from single primary afferents. Thermosensitive spots provide foundational support for "labeled line" or specificity theory of sensory perception, which states that different sensory qualities are transmitted by separate and specific neural pathways. This theory predicts a highly stable relation between repetitions of a thermal stimulus and the resulting sensory quality, yet these predictions have rarely been tested systematically. Here, we present the qualitative, spatial, and repeatability properties of 334 thermosensitive spots on the dorsal forearm sampled across four separate sessions. In line with previous literature, we found that spots associated with cold sensations (112 cold spots, 34%) were more frequent than spots associated with warm sensations (41 warm spots, 12%). Still more frequent (165 spots, 49%) were spots that elicited inconsistent sensations when repeatedly stimulated by the same temperature. Remarkably, only 13 spots (4%) conserved their position between sessions. Overall, we show unexpected inconsistency of both the perceptual responses elicited by spot stimulation and of spot locations across time. These observations suggest reappraisals of the traditional view that thermosensitive spots reflect the location of individual thermosensitive, unimodal primary afferents serving as specific labeled lines for corresponding sensory qualities.NEW & NOTEWORTHY Thermosensitive spots are clustered rather than randomly distributed and have the highest density near the wrist. Surprisingly, we found that thermosensitive spots elicit inconsistent sensory qualities and are unstable over time. Our results question the widely believed notion that thermosensitive spots reflect the location of individual thermoreceptive, unimodal primary afferents that serve as labelled lines for corresponding sensory qualities.


Assuntos
Mentol , Pele , Temperatura , Pele/inervação , Sensação , Extremidade Superior , Temperatura Baixa
4.
Heliyon ; 9(8): e18495, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37534006

RESUMO

This neuroanatomical study in four, adult, Sprague-Dawley female rats quantified the number of Urothelial (labeled by intravesical DiI dye administration) and Non-Urothelial (labeled by intraparenchymal injection of Fast blue dye) bladder primary afferent neurons (bPANs) located in the T13, L1, L6 and S1 dorsal root ganglia. Additional immunohistochemical labeling using antibodies to detect either Substance P or CGRP further characterized the bPAN samples as peptidergic or non-peptidergic. Cell counts indicated that Urothelial bPANs were more common at the L6/S1 levels and more likely to be identified as peptidergic when compared with bPANs characterized at T13/L1 levels and with Non-Urothelial bPANs. These studies provide additional evidence that at least two distinct neuronal populations, with differing localization of sensory terminals, differing peptide content, and differing projections to the central nervous system, are responsible for bladder sensation.

5.
J Neurosci ; 43(18): 3245-3258, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36948583

RESUMO

Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aßδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.


Assuntos
Corno Dorsal da Medula Espinal , Medula Espinal , Feminino , Masculino , Ratos , Animais , Dor , Fibras Nervosas Amielínicas/fisiologia , Interneurônios , Nociceptores/fisiologia , Neurônios Aferentes/fisiologia , Vias Aferentes/fisiologia
6.
Front Mol Neurosci ; 16: 1115685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969557

RESUMO

Objective: Intense inflammation may result in pain, which manifests as spinal central sensitization. There is growing evidence that purinergic signaling plays a pivotal role in the orchestration of pain processing. Over the last decade the ionotropic P2X purino receptor 4 (P2X4) got into spotlight in neuropathic disorders, however its precise spinal expression was scantily characterized during inflammatory pain. Thus, we intended to analyze the receptor distribution within spinal dorsal horn and lumbar dorsal root ganglia (DRG) of rats suffering in inflammatory pain induced by complete Freund adjuvant (CFA). Methods: CFA-induced peripheral inflammation was validated by mechanical and thermal behavioral tests. In order to ensure about the putative alteration of spinal P2X4 receptor gene expression qPCR reactions were designed, followed by immunoperoxidase and Western blot experiments to assess changes at a protein level. Colocalization of P2X4 with neuronal and glial markers was investigated by double immunofluorescent labelings, which were subsequently analyzed with IMARIS software. Transmission electronmicroscopy was applied to study the ultrastructural localization of the receptor. Concurrently, in lumbar DRG cells similar methodology has been carried out to complete our observations. Results: The figures of mechanical and thermal behavioral tests proved the establishment of CFA-induced inflammatory pain. We observed significant enhancement of P2X4 transcript level within the spinal dorsal horn 3 days upon CFA administration. Elevation of P2X4 immunoreactivity within Rexed lamina I-II of the spinal gray matter was synchronous with mRNA expression, and confirmed by protein blotting. According to IMARIS analysis the robust protein increase was mainly detected on primary afferent axonterminals and GFAP-labelled astrocyte membrane compartments, but not on postsynaptic dendrites was also validated ultrastructurally within the spinal dorsal horn. Furthermore, lumbar DRG analysis demonstrated that peptidergic and non-peptidergic nociceptive subsets of ganglia cells were also abundantly positive for P2X4 receptor in CFA model. Conclusion: Here we provide novel evidence about involvement of neuronal and glial P2X4 receptor in the establishment of inflammatory pain.

7.
Curr Biol ; 32(19): 4225-4239.e7, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070776

RESUMO

We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO2-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO2-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO2 concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO2. Behavioral responses to CO2 also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO2. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Dióxido de Carbono , Drosophila/fisiologia , Neurotransmissores , Odorantes , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia
8.
Front Mol Neurosci ; 15: 891463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557554

RESUMO

Primary sensory axons in adult mammals fail to regenerate after spinal cord injury (SCI), in part due to insufficient intrinsic growth potential. Robustly boosting their growth potential continues to be a challenge. Previously, we showed that constitutive activation of B-RAF (rapidly accelerated fibrosarcoma kinase) markedly promotes axon regeneration after dorsal root and optic nerve injuries. The regrowth is further augmented by supplemental deletion of PTEN (phosphatase and tensin homolog). Here, we examined whether concurrent B-RAF activation and PTEN deletion promotes dorsal column axon regeneration after SCI. Remarkably, genetically targeting B-RAF and PTEN selectively in DRG neurons of adult mice enables many DC axons to enter, cross, and grow beyond the lesion site after SCI; some axons reach ∼2 mm rostral to the lesion by 3 weeks post-injury. Co-targeting B-RAF and PTEN promotes more robust DC regeneration than a pre-conditioning lesion, which additively enhances the regeneration triggered by B-RAF/PTEN. We also found that post-injury targeting of B-RAF and PTEN enhances DC axon regeneration. These results demonstrate that co-targeting B-RAF and PTEN effectively enhances the intrinsic growth potential of DC axons after SCI and therefore may help to develop a novel strategy to promote robust long-distance regeneration of primary sensory axons.

9.
J Comp Neurol ; 530(11): 1950-1965, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292976

RESUMO

Although corticospinal neurons are known to be distributed in both the primary motor and somatosensory cortices (S1), details of the projection pattern of their fibers to the lumbar cord gray matter remain largely uncharacterized, especially in rodents. We previously investigated the cortical area projecting to the gray matter of the fourth lumbar cord segment (L4) (L4 Cx) in mice. In the present study, we injected an anterograde tracer into multiple sites to cover the entire L4 Cx. We found that (1) the rostromedial part of the L4 Cx projects to the intermediate and ventral zones of the lumbar cord gray matter, (2) the lateral part projects to the medial dorsal horn, and (3) the caudal part projects to the lateral dorsal horn. We also found that the border between the rostromedial and caudolateral parts corresponds to the border between the agranular and granular cortex. Analysis of the somatotopic patterns formed by the cortical projection cells and the primary sensory neurons innervating the skin of the hindlimb and its related area suggests that the lateral part corresponds to the S1 hindlimb area and the caudal part to the S1 trunk area. Examination of thalamic innervation by the L4 Cx revealed that the caudolateral L4 Cx focally projects to the ventrobasal complex (VB) and the posterior complex (PO), while the medial L4 Cx widely projects to the PO but little to the VB. These findings suggest that the L4 Cx is parceled into subregions defined by the cytoarchitecture and subcortical projection.


Assuntos
Córtex Somatossensorial , Medula Espinal , Animais , Substância Cinzenta , Membro Posterior/inervação , Camundongos , Medula Espinal/fisiologia , Tálamo
10.
J Dent Res ; 101(7): 812-820, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35086367

RESUMO

Periodontitis is a highly prevalent chronic inflammatory disease that progressively destroys the structures supporting teeth, leading to tooth loss. Periodontal tissue is innervated by abundant pain-sensing primary afferents expressing neuropeptides and transient receptor potential vanilloid 1 (TRPV1). However, the roles of nociceptive nerves in periodontitis and bone destruction are controversial. The placement of ligature around the maxillary second molar or the oral inoculation of pathogenic bacteria induced alveolar bone destruction in mice. Chemical ablation of nociceptive neurons in the trigeminal ganglia achieved by intraganglionic injection of resiniferatoxin decreased bone loss in mouse models of experimental periodontitis. Consistently, ablation of nociceptive neurons decreased the number of osteoclasts in alveolar bone under periodontitis. The roles of nociceptors were also determined by the functional inhibition of TRPV1-expressing trigeminal afferents using an inhibitory designer receptor exclusively activated by designer drugs (DREADD) receptor. Noninvasive chemogenetic functional silencing of TRPV1-expressing trigeminal afferents not only decreased induction but also reduced the progression of bone loss in periodontitis. The infiltration of leukocytes and neutrophils to the periodontium increased at the site of ligature, which was accompanied by increased amount of proinflammatory cytokines, such as receptor activator of nuclear factor κΒ ligand, tumor necrosis factor, and interleukin 1ß. The extents of increase in immune cell infiltration and cytokines were significantly lower in mice with nociceptor ablation. In contrast, the ablation of nociceptors did not alter the periodontal microbiome under the conditions of control and periodontitis. Altogether, these results indicate that TRPV1-expressing afferents increase bone destruction in periodontitis by promoting hyperactive host responses in the periodontium. We suggest that specific targeting of neuroimmune and neuroskeletal regulation can offer promising therapeutic targets for periodontitis supplementing conventional treatments.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/complicações , Animais , Modelos Animais de Doenças , Camundongos , Neurônios , Nociceptores , Osteoclastos , Periodontite/complicações , Periodonto
11.
Front Cell Neurosci ; 16: 1029799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713779

RESUMO

Although spinal processing of sensory information greatly relies on afferent-driven (AD) presynaptic inhibition (PI), our knowledge about how it shapes peripheral input to different types of nociceptive neurons remains insufficient. Here we examined the AD-PI of primary afferent input to spinal neurons in the marginal layer, lamina I, and the layer surrounding the central canal, lamina X; two nociceptive-processing regions with similar patterns of direct supply by Aδ- and C-afferents. Unmyelinated C-fibers were selectively activated by electrical stimuli of negative polarity that induced an anodal block of myelinated Aß/δ-fibers. Combining this approach with the patch-clamp recording in an ex vivo spinal cord preparation, we found that attenuation of the AD-PI by the anodal block of Aß/δ-fibers resulted in the appearance of new mono- and polysynaptic C-fiber-mediated excitatory postsynaptic current (EPSC) components. Such homosegmental Aß/δ-AD-PI affected neurons in the segment of the dorsal root entrance as well as in the adjacent rostral segment. In their turn, C-fibers from the L5 dorsal root induced heterosegmental AD-PI of the inputs from the L4 Aδ- and C-afferents to the neurons in the L4 segment. The heterosegmental C-AD-PI was reciprocal since the L4 C-afferents inhibited the L5 Aδ- and C-fiber inputs, as well as some direct L5 Aß-fiber inputs. Moreover, the C-AD-PI was found to control the spike discharge in spinal neurons. Given that the homosegmental Aß/δ-AD-PI and heterosegmental C-AD-PI affected a substantial percentage of lamina I and X neurons, we suggest that these basic mechanisms are important for shaping primary afferent input to the neurons in the spinal nociceptive-processing network.

12.
Biology (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681075

RESUMO

Neuroplasticity is a robust mechanism by which the central nervous system attempts to adapt to a structural or chemical disruption of functional connections between neurons. Mechanical damage from spinal cord injury potentiates via neuroinflammation and can cause aberrant changes in neural circuitry known as maladaptive plasticity. Together, these alterations greatly diminish function and quality of life. This review discusses contemporary efforts to harness neuroplasticity through rehabilitation and neuromodulation to restore function with a focus on motor recovery following cervical spinal cord injury. Background information on the general mechanisms of plasticity and long-term potentiation of the nervous system, most well studied in the learning and memory fields, will be reviewed. Spontaneous plasticity of the nervous system, both maladaptive and during natural recovery following spinal cord injury is outlined to provide a baseline from which rehabilitation builds. Previous research has focused on the impact of descending motor commands in driving spinal plasticity. However, this review focuses on the influence of physical therapy and primary afferent input and interneuron modulation in driving plasticity within the spinal cord. Finally, future directions into previously untargeted primary afferent populations are presented.

13.
J Physiol ; 599(23): 5261-5279, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676533

RESUMO

Vagus nerve stimulation (VNS) treats patients with drug-resistant epilepsy, depression and heart failure, but the mechanisms responsible are uncertain. The mild stimulus intensities used in chronic VNS suggest activation of myelinated primary visceral afferents projecting to the nucleus of the solitary tract (NTS). Here, we monitored the activity of second and higher order NTS neurons in response to peripheral vagal activation using therapeutic VNS criteria. A bipolar stimulating electrode activated the left cervical vagus nerve, and stereotaxically placed single tungsten electrodes recorded unit activity from the left caudomedial NTS of chloralose-anaesthetized rats. High-intensity single electrical stimuli established vagal afferent conduction velocity (myelinated A-type or unmyelinated C-type) as well as synaptic order (second vs. higher order using paired electrical stimuli) for inputs to single NTS neurons. Then, VNS treatment was applied. A mid-collicular knife cut (KC) divided the brainstem from all supramedullary regions to determine their contribution to NTS activity. Our chief findings indicate that the KC reduced basal spontaneous activity of second-order NTS neurons receiving myelinated vagal input by 85%. In these neurons, acute VNS increased activity similarly in Control and KC animals. Interestingly, the KC interrupted VNS activation of higher order NTS neurons and second-order NTS neurons receiving unmyelinated vagal input, indicating that supramedullary descending projections to NTS are needed to amplify the peripheral neuronal signal from VNS. The present study begins to define the pathways activated during VNS and will help to better identify the central nervous system contributions to the therapeutic benefits of VNS therapy. KEY POINTS: Vagus nerve stimulation is routinely used in the clinic to treat epilepsy and depression, despite our uncertainty about how this treatment works. For this study, the connections between the nucleus of the solitary tract (NTS) and the higher brain regions were severed to learn more about their contribution to activity of these neurons during stimulation. Severing these brain connections reduced baseline activity as well as reducing stimulation-induced activation for NTS neurons receiving myelinated vagal input. Higher brain regions play a significant role in maintaining both normal activity in NTS and indirect mechanisms of enhancing NTS neuronal activity during vagus nerve stimulation.


Assuntos
Estimulação do Nervo Vago , Animais , Tronco Encefálico , Estimulação Elétrica , Humanos , Neurônios , Ratos , Núcleo Solitário , Nervo Vago
14.
J Pain ; 22(10): 1283-1293, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33887444

RESUMO

Chronic Overlapping Pain Conditions, including irritable bowel syndrome (IBS) and temporomandibular disorder (TMD), represent a group of idiopathic pain conditions that likely have peripheral and central mechanisms contributing to their pathology, but are poorly understood. These conditions are exacerbated by stress and have a female predominance. The presence of one condition predicts the presence or development of additional conditions, making this a significant pain management problem. The current study was designed to determine if the duration and magnitude of peripheral sensitization and spinal central sensitization differs between restraint stress-induced visceral hypersensitivity (SIH) and chronic comorbid pain hypersensitivity (CPH; stress during pre-existing orofacial pain). SIH in female rats, as determined by the visceromotor response, persisted at least four but resolved by seven weeks. In contrast, CPH persisted at least seven weeks. Surprisingly, colonic afferents in both SIH and CPH rats were sensitized at seven weeks. CPH rats also had referred pain through seven weeks, but locally anesthetizing the colon only attenuated the referred pain through four weeks, suggesting a transition to colonic afferent independent central sensitization. Different phenotypes of dorsal horn neurons were sensitized in the CPH rats seven weeks post stress compared to four weeks or SIH rats. The current study suggests differential processing of colonic afferent input to the lumbosacral spinal cord contributes to visceral hypersensitivity during comorbid chronic pain conditions. PERSPECTIVE: Chronic Overlapping Pain Conditions represent a unique challenge in pain management. The diverse nature of peripheral organs hinders a clear understanding of underlying mechanisms accounting for the comorbidity. This study highlights a mismatch between the condition-dependent behavior and peripheral and spinal mechanisms that contribute to visceral pain hypersensitivity.


Assuntos
Dor Crônica/fisiopatologia , Colo/inervação , Dor Facial/fisiopatologia , Hiperalgesia/fisiopatologia , Dor Referida/fisiopatologia , Células do Corno Posterior/fisiologia , Células Receptoras Sensoriais/fisiologia , Estresse Psicológico/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Hiperalgesia/etiologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Dor Visceral/etiologia
15.
Curr Top Dev Biol ; 142: 443-475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706924

RESUMO

Primary nociceptors are a heterogeneous class of peripheral somatosensory neurons, responsible for detecting noxious, pruriceptive, and thermal stimuli. These neurons are further divided into several molecularly defined subtypes that correlate with their functional sensory modalities and morphological features. During development, all nociceptors arise from a common pool of embryonic precursors, and then segregate progressively into their mature specialized phenotypes. In this review, we summarize the intrinsic transcriptional programs and extrinsic trophic factor signaling mechanisms that interact to control nociceptor diversification. We also discuss how recent transcriptome profiling studies have significantly advanced the field of sensory neuron development.


Assuntos
Neurônios , Nociceptores , Dor , Humanos , Prurido
16.
Purinergic Signal ; 17(1): 49-54, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33169292

RESUMO

Purinergic signalling plays important roles in somatosensory and nociceptive transmission in the dorsal horn of the spinal cord under physiological and pathophysiological conditions. Physiologically, ATP mediates excitatory postsynaptic responses in nociceptive transmission in the superficial dorsal horn, and in transmission of innocuous primary afferent inputs in the deep dorsal horn. Additionally, extracellular conversion of ATP to adenosine mediates inhibitory postsynaptic responses from Pacinian corpuscle afferents, and is implicated in analgesia caused by transcutaneous electrical nerve stimulation in humans. In terms of pathological pain, P2X4 receptors de novo expressed on dorsal horn microglia are implicated in pain hypersensitivity following peripheral nerve injury. There is evidence that involvement of such P2X4 receptors is sexually dimorphic, occurring in males but not in females. Thus, the roles of purinergic signalling in physiological and pathological pain processing are complex and remain an ever-expanding field of research.


Assuntos
Trifosfato de Adenosina/metabolismo , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptores Purinérgicos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Microglia/metabolismo
17.
Neurosci Res ; 170: 50-58, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32987088

RESUMO

Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.


Assuntos
Neurônios Aferentes , Ácido gama-Aminobutírico , Axônios , Gânglios Espinais , Neuroglia , Receptores de GABA-A
18.
Schmerz ; 34(6): 525-535, 2020 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-33025226

RESUMO

In the past 10 years specific pathways for pruritus have been characterized on a cellular and molecular level but their exact role in the pathophysiology of neuropathic pruritus remains unclear. This also applies to the question which of the competing theories for pruritus, e.g. specificity, temporal/spatial pattern or intensity, would best apply. While experimental trials on mice have mostly confirmed the theory of specificity, the results on humans indicate a role of spatial and temporal patterns. The skin innervation is greatly reduced by the neuropathy and could provide a "spatial contrast pattern" and the axotomy could induce a de novo expression of gastrin-releasing peptide (GRP) in primarily afferent nociceptors and thus modulate spinal pruritus processing. In addition, the overlap of pruritus and pain in neuropathy patients complicates the direct translation from animal experiments and requires collaboration at the clinical level between pain medicine and dermatology.


Assuntos
Doenças do Sistema Nervoso Periférico , Prurido , Animais , Peptídeo Liberador de Gastrina/metabolismo , Humanos , Camundongos , Nociceptores/patologia , Dor , Doenças do Sistema Nervoso Periférico/fisiopatologia , Prurido/fisiopatologia , Pele/inervação , Pele/fisiopatologia
19.
Front Mol Neurosci ; 13: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431594

RESUMO

Nowadays, pain represents one of the most important societal burdens. Current treatments are, however, too often ineffective and/or accompanied by debilitating unwanted effects for patients dealing with chronic pain. Indeed, the prototypical opioid morphine, as many other strong analgesics, shows harmful unwanted effects including respiratory depression and constipation, and also produces tolerance, physical dependence, and addiction. The urgency to develop novel treatments against pain while minimizing adverse effects is therefore crucial. Over the years, the delta-opioid receptor (DOP) has emerged as a promising target for the development of new pain therapies. Indeed, targeting DOP to treat chronic pain represents a timely alternative to existing drugs, given the weak unwanted effects spectrum of DOP agonists. Here, we review the current knowledge supporting a role for DOP and its agonists for the treatment of pain. More specifically, we will focus on the cellular and subcellular localization of DOP in the nervous system. We will also discuss in further detail the molecular and cellular mechanisms involved in controlling the cellular trafficking of DOP, known to differ significantly from most G protein-coupled receptors. This review article will allow a better understanding of how DOP represents a promising target to develop new treatments for pain management as well as where we stand as of our ability to control its cellular trafficking and cell surface expression.

20.
J Dent Res ; 99(9): 1004-1012, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32374638

RESUMO

Craniofacial muscle pain is highly prevalent in temporomandibular disorders but is difficult to treat. Enhanced understanding of neurobiology unique to craniofacial muscle pain should lead to the development of novel mechanism-based treatments. Herein, we review recent studies to summarize neural pathways of craniofacial muscle pain. Nociceptive afferents in craniofacial muscles are predominantly peptidergic afferents enriched with TRPV1. Signals from peripheral glutamate receptors converge onto TRPV1, leading to mechanical hyperalgesia. Further studies are needed to clarify whether hyperalgesic priming in nonpeptidergic afferents or repeated acid injections also affect craniofacial muscle pain. Within trigeminal ganglia, afferents innervating craniofacial muscles interact with surrounding satellite glia, which enhances the sensitivity of the inflamed neurons as well as nearby uninjured afferents, resulting in hyperalgesia and ectopic pain originating from adjacent orofacial tissues. Craniofacial muscle afferents project to a wide area within the trigeminal nucleus complex, and central sensitization of medullary dorsal horn neurons is a critical factor in muscle hyperalgesia related to ectopic pain and emotional stress. Second-order neurons project rostrally to pathways associated with affective pain, such as parabrachial nucleus and medial thalamic nucleus, as well as sensory-discriminative pain, such as ventral posteromedial thalamic nuclei. Abnormal endogenous pain modulation can also contribute to chronic muscle pain. Descending serotonergic circuits from the rostral ventromedial medulla facilitate activation of second-order neurons in the trigeminal nucleus complex, which leads to the maintenance of mechanical hyperalgesia of inflamed masseter muscle. Patients with temporomandibular disorders exhibit altered brain networks in widespread cortical and subcortical regions. Recent development of methods for neural circuit manipulation allows silencing of specific hyperactive neural circuits. Chemogenetic silencing of TRPV1-expressing afferents or rostral ventromedial medulla neurons attenuates hyperalgesia during masseter inflammation. It is likely, therefore, that further delineation of neural circuits mediating craniofacial muscle hyperalgesia potentially enhances treatment of chronic muscle pain conditions.


Assuntos
Dor Facial , Mialgia , Vias Neurais , Canais de Cátion TRPV , Animais , Humanos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...