Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Animals (Basel) ; 14(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998060

RESUMO

Oral melanomas are the most common oral malignancies in dogs and are characterized by an aggressive nature, invasiveness, and poor prognosis. With biological and genetic similarities to human oral melanomas, they serve as a valuable spontaneous comparative model. Primary cell cultures are widely used in human medicine and, more recently, in veterinary medicine to study tumorigenesis, cancer progression, and innovative therapeutic approaches. This study aims to establish two- and three-dimensional primary cell lines from oral canine melanomas using fine-needle aspiration as a minimally invasive sampling method. For this study, samples were collected from six dogs, represented by four primary oral melanomas and five lymph nodal metastases. The cells were digested to obtain single-cell suspensions, seeded in flasks, or processed with Matrigel® to form organoids. The cell cultures were characterized through flow cytometry using antibodies against Melan-A, PNL2, and Sox-10. This technique offers a minimally invasive means to obtain cell samples, particularly beneficial for patients that are ineligible for surgical procedures, and enables the establishment of in vitro models crucial for comparative studies in mucosal melanoma oncology. To the best of our knowledge, this is the first work establishing neoplastic primary cell cultures via fine-needle aspiration in dogs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39016079

RESUMO

Experimental teaching is an important part of postgraduate training in basic and clinical medicine. While primary cell isolation and identification are among the most important research techniques for medical graduate students, most graduate students do not understand and master these techniques before starting their research experience. In particular, many students lack training in this field, and high-quality teaching and learning materials are still very sparse. Here, we designed a practical experiment course for graduate students engaged in research. The target students usually have research projects involving primary cell culture in their future research, making the course highly applicable for the students. The lab exercise focused on the methods of primary cell isolation (including mechanical grinding method, explant culture method and enzymatic digestion method) and identification (including flow cytometry, immunofluorescence, and periodic acid-Schiff (PAS) staining). It aimed to help students master the conceptual, principle, technical, operation, and analytical skills related to primary cell culture and contributed to their foundation for future research. Students generally reflect that they have initially mastered the isolation and identification of primary cell culture as a result of the course. Student feedback also indicates significantly increased confidence in the practical application of primary cell culture in the future. Here, we provide our experience for others who may want to implement similar courses.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38914842

RESUMO

Cetacean-cultured cells are a promising tool for life science research. Most cells used in cetacean research are derived from the skin and kidneys. However, cell cultures from various organs are required for more flexible cetacean research. Primary cultures were prepared from kidney, intestinal, and lung tissues using a simple tissue fragment culture method from a striped dolphin (Stenella coeruleoalba). Kidney and intestinal cells were mostly epithelial-like, whereas lung cells were mostly fibroblast-like. The simple tissue fragment culture method presented in this study will be useful for expanding cetacean cell resources. Culturing allogeneic cell models is expected to introduce a flexible in vitro approach to cetacean research.

4.
Sci Rep ; 14(1): 11056, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744935

RESUMO

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Retinoblastoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a Retinoblastoma/genética , Proliferação de Células , Mutação em Linhagem Germinativa , Criopreservação , Masculino , Perfilação da Expressão Gênica , Movimento Celular/genética
5.
J Virol Methods ; 328: 114952, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754768

RESUMO

Primary cell cultures derived from human embryo lung play a crucial role in virology by aiding virus propagation and vaccine development. These cultures exhibit a notable ability to undergo multiple subcultures, often reaching up to 70 passages. However, finding alternative primary cell cultures with similar longevity and usefulness is challenging. In this study, we introduce a novel primary culture cells derived from equine embryo brain (FEB), which cells exhibited remarkable long-term cultivation potential. The FEB was established and maintained using Sumitomo Nerve-Cell Culture System Comparison studies were conducted with fetal equine kidney cell line (FEK-Tc13) to assess growth rates and subculture longevity. Immunological characterization was performed using neuronal markers to confirm the neural nature of FEB cells. Viral growth assessments were conducted using equine herpesviruses (EHV-1 and EHV-4) to evaluate infectivity and cytopathic effects in FEB cells. PCR analysis and real-time PCR assays were employed to detect viral genomic DNA and transcription activity of EHVs in infected FEB cells. FEB cells demonstrated faster growth rates compared to fetal equine kidney cell line (FEK-Tc13 cells) and exhibited sustained subculture capability exceeding 50 passages. Immunostaining confirmed the glial identity of FEB cells. Both equine herpesviruses 1 and 4 EHV-1 and EHV-4 viruses efficiently replicated in FEB cells, resulting in clear cytopathic effects. PCR analysis detected genomic DNA of EHVs in infected FEB cells, indicating successful viral infection. The establishment of FEB cells with extended subculture capability highlights their potential utility as a model system for studying neural cell biology and viral infections.


Assuntos
Encéfalo , Animais , Cavalos/virologia , Encéfalo/virologia , Encéfalo/embriologia , Encéfalo/citologia , Cultura Primária de Células/métodos , Herpesvirus Equídeo 1/crescimento & desenvolvimento , Herpesvirus Equídeo 1/fisiologia , Linhagem Celular , Neurônios/virologia , Cultura de Vírus/métodos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/veterinária , Células Cultivadas , Replicação Viral
6.
Cell Biol Int ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533750

RESUMO

Marine molluscan cell lines, required for virus screening and cultivation, form essential tools for developing health management strategies for these animals in the blue economy. Moreover, they are also crucial to develop cultivated seafood. As there is no valid marine molluscan cell line, primary cell cultures are relied upon for all investigations. A sound protocol for generating primary cell cultures from molluscs is entailed, but existing protocols often involve heavy antibiotic usage and depuration that invariably affect gene expression and cell health. This work presents an easy-to-adopt, time-saving protocol using non-depurated mollusc Crassostrea madrasensis, which requires only initial antibiotic treatment and minimal exposure or no use of antibiotics in the cell culture medium. The important experimental considerations for arriving at this protocol have been elucidated. Accordingly, sodium hypochlorite and neomycin sulfate were chosen for disinfecting tissues. The study is the first to use shrimp cell culture medium (SCCM) as a cell culture medium for molluscan cell culture. Despite being osmoconformers, the oysters exhibited stable intracellular osmotic conditions and pH, which, when provided in vitro, promoted effective cardiomyocyte formation. The cell viability could be enhanced using 10% fetal bovine serum (FBS), but healthy cell culture could also be obtained using SCCM without FBS. The optimized culture conditions allowed for regular beating cardiomyocyte clusters that could be retained for a month. Limited cell proliferation, as shown by the BrdU assay, demands further interventions, such as possibly producing induced pluripotent stem cells. The optimized protocol and culture conditions also align with some requirements for producing cultivated meat from marine molluscs.

7.
Methods Protoc ; 7(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38525778

RESUMO

The generation of bone-marrow-derived dendritic cells is a widely used approach in immunological research to study antigen processing and presentation, as well as T-cell activation responses. However, the initial step of isolating the bone marrow can be time-consuming, especially when larger numbers of precursor cells are required. Here, we assessed whether an accelerated bone marrow isolation method using centrifugation is suitable for the differentiation of FMS-like tyrosine kinase 3 ligand-driven dendritic cells. Compared to the conventional flushing method, the centrifugation-based isolation method resulted in a similar bone marrow cell yield on Day 0, increased cell numbers by Day 8, similar proportions of dendritic cell subsets, and consequently a higher number of type 1 conventional dendritic cells (cDC1) from the culture. Although the primary purpose of this method of optimization was to improve experimental efficiency and increase the output of cDC1s, the protocol is also compatible with the differentiation of other dendritic cell subsets such as cDC2 and plasmacytoid dendritic cells, with an improved output cell count and a consistent phenotype.

8.
J Biotechnol ; 386: 10-18, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38519034

RESUMO

Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.


Assuntos
Microglia , Doenças Neuroinflamatórias , Humanos , Pesquisa Translacional Biomédica , Macrófagos , Técnicas de Cultura de Células
9.
J Virol Methods ; 327: 114922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556175

RESUMO

A 2D primary gill cell culture system of the sevenband grouper (Hyporthodus septemfasciatus) was established to validate the pathogenesis of nervous necrosis virus (NNV) as observed in previous studies. This system, developed using the double-seeded insert (DSI) technique, yielded confluent cell layers. Upon challenge with NNV in a setup containing both autoclaved salt water and L15 media in the apical compartment, viral replication akin to that anticipated based on previous studies was observed. Consequently, we advocate for the utilization of primary gill cell culture as a viable alternative to conventional methodologies for investigating host pathogen interactions.


Assuntos
Brânquias , Nodaviridae , Replicação Viral , Animais , Brânquias/virologia , Brânquias/citologia , Nodaviridae/fisiologia , Cultura Primária de Células/métodos , Bass/virologia , Doenças dos Peixes/virologia , Técnicas de Cultura de Células/métodos , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Células Cultivadas , Interações Hospedeiro-Patógeno
10.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385867

RESUMO

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Assuntos
Diferenciação Celular , Proliferação de Células , Corticosterona , Glucocorticoides , Camundongos Endogâmicos C57BL , Bainha de Mielina , Oligodendroglia , Animais , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Glucocorticoides/farmacologia , Corticosterona/farmacologia , Camundongos Endogâmicos DBA , Células Cultivadas , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Patrimônio Genético , Masculino , Linhagem da Célula/efeitos dos fármacos , Estresse Psicológico/metabolismo
11.
Physiol Rep ; 12(3): e15921, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302275

RESUMO

In this study, we compared 12 mm cell culture inserts with permeable polyester membranes (0.4 µm pores) from two different manufacturers: CELLTREAT® and Corning®. Physical dimensions and masses of the inserts were found to be very similar between the two brands, with CELLTREAT® inserts having a slightly smaller diameter and growth area (11.91 mm; 1.11 cm2 ) compared to Corning® Transwells® (12 mm; 1.13 cm2 ). We compared cell differentiation outcomes of human nasal epithelial cells (HNECs) at air-liquid interface grown on inserts from the two different manufacturers, including trans-epithelial electrical resistance, ciliary beat frequency, ciliated area, and gene expression. HNECs from three male donors were used for all endpoints. No statistically significant differences were observed between paired cultures grown on different brands of insert. In conclusion, these inserts are comparable for use with airway epithelial cell model systems and likely do not impact cellular differentiation or cell culture quality.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Humanos , Masculino , Técnicas de Cultura de Células/métodos , Células Epiteliais/metabolismo , Sistema Respiratório , Células Cultivadas , Diferenciação Celular
12.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339124

RESUMO

Peripheral nerve injury denervates muscle, resulting in muscle paralysis and atrophy. This is reversible if timely muscle reinnervation occurs. With delayed reinnervation, the muscle's reparative ability declines, and muscle-resident fibro-adipogenic progenitor cells (FAPs) proliferate and differentiate, inducing fibro-fatty muscle degradation and thereby physical disability. The mechanisms by which the peripheral nerve regulates FAPs expansion and differentiation are incompletely understood. Using the rat tibial neve transection model, we demonstrated an increased FAPs content and a changing FAPs phenotype, with an increased capacity for adipocyte and fibroblast differentiation, in gastrocnemius muscle post-denervation. The FAPs response was inhibited by immediate tibial nerve repair with muscle reinnervation via neuromuscular junctions (NMJs) and sensory organs (e.g., muscle spindles) or the sensory protection of muscle (where a pure sensory nerve is sutured to the distal tibial nerve stump) with reinnervation by muscle spindles alone. We found that both procedures reduced denervation-mediated increases in glial-cell-line-derived neurotrophic factor (GDNF) in muscle and that GDNF promoted FAPs adipogenic and fibrogenic differentiation in vitro. These results suggest that the peripheral nerve controls FAPs recruitment and differentiation via the modulation of muscle GDNF expression through NMJs and muscle spindles. GDNF can serve as a therapeutic target in the management of denervation-induced muscle injury.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Músculo Esquelético , Ratos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular , Nervo Tibial/lesões , Adipogenia , Denervação
13.
Protein Pept Lett ; 31(3): 229-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288820

RESUMO

OBJECTIVES: In this study, we employed an in vitro culturing technique to investigate the impact of p53 on the modulation of growth-associated protein-43 (GAP-43) within the primary cortical neurons of rat specimens. METHODS: (1) Within the first 24 hours after birth, the bilateral cortex was extracted from newborn Wistar rats and primary cortical neurons were cultured and identified. (2) The changes in the mRNA and protein expressions of GAP-43 induced by p53 in rat primary cortical neurons cultured in vitro were identified utilizing real-time polymerase chain reaction and western blot techniques. RESULTS: (1) Lentiviral transfection of p53 within primary cortical neurons of rats elicited elevated levels of both mRNA and protein expressions of GAP-43, consequently culminating in a noteworthy augmentation of p53 expression. (2) The introduction of a p53 inhibitor in rat primary cortical neurons resulted in a reduction in both mRNA and protein expressions of GAP-43. CONCLUSION: Within primary rat cortical neurons, p53 has the potential to prompt an augmentation in both the transcriptional and protein expression levels of the GAP-43 protein.


Assuntos
Córtex Cerebral , Proteína GAP-43 , Neurônios , Ratos Wistar , Proteína Supressora de Tumor p53 , Regulação para Cima , Animais , Ratos , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Neurônios/metabolismo , Neurônios/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
14.
Cell Tissue Bank ; 25(1): 187-194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37145371

RESUMO

Primary cell cultures are essential tools for elucidating the physiopathological mechanisms of the cardiovascular system. Therefore, a primary culture growth protocol of cardiovascular smooth muscle cells (VSMCs) obtained from human abdominal aortas was standardized. Ten abdominal aorta samples were obtained from patients diagnosed with brain death who were organ and tissue donors with family consent. After surgical ablation to capture the aorta, the aortic tissue was removed, immersed in a Custodiol® solution, and kept between 2 and 8 °C. In the laboratory, in a sterile environment, the tissue was fragmented and incubated in culture plates containing an enriched culture medium (DMEM/G/10% fetal bovine serum, L-glutamine, antibiotics and antifungals) and kept in an oven at 37 °C and 5% CO2. The aorta was removed after 24 h of incubation, and the culture medium was changed every six days for twenty days. Cell growth was confirmed through morphological analysis using an inverted optical microscope (Nikon®) and immunofluorescence for smooth muscle alpha-actin and nuclei. The development of the VSMCs was observed, and from the twelfth day, differentiation, long cytoplasmic projections, and adjacent cell connections occurred. On the twentieth day, the morphology of the VSMCs was confirmed by actin fiber immunofluorescence, which is a typical characteristic of VSMCs. The standardization allowed VSMC growth and the replicability of the in vitro test, providing a protocol that mimics natural physiological environments for a better understanding of the cardiovascular system. Its use is intended for investigation, tissue bioengineering, and pharmacological treatments.


Assuntos
Aorta Abdominal , Doenças Vasculares , Humanos , Morte Encefálica/metabolismo , Morte Encefálica/patologia , Músculo Liso Vascular/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Modelos Teóricos , Miócitos de Músculo Liso , Encéfalo , Células Cultivadas
15.
Methods Mol Biol ; 2749: 109-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38133779

RESUMO

The ectocervix acts as a multilayered defense barrier, protecting the female reproductive system from external pathogens and supporting fertility and pregnancy. To understand the complex cellular and molecular mechanisms of cervical biology and disease, reliable in vitro models are vital. We present an efficient method to isolate and cultivate epithelial stem cells from ectocervical tissue biopsies. This method combines enzymatic digestion, mechanical dissociation, and selective culturing to obtain pure ectocervical epithelial cells for further investigation. The protocol accommodates both 2D stem cell monolayer and advanced 3D culture systems, such as air-liquid interface and Matrigel scaffolds, using a defined media cocktail, making it highly versatile. The primary ectocervical epithelial cells retain their native characteristics, enabling the exploration of ectocervical epithelial tissue behavior and pathology. This chapter provides step-by-step guidelines for setting up 2D and 3D cultures, facilitating adoption across different laboratories, and advancing cervical biology and disease research.


Assuntos
Técnicas de Cultura de Células , Colo do Útero , Humanos , Feminino , Técnicas de Cultura de Células/métodos , Células Epiteliais , Células-Tronco , Interfase
16.
Methods Mol Biol ; 2749: 1-6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38133769

RESUMO

Primary cell culture systems are widely used as a valuable method for analyzing the biological functions of specific cells in vitro. Recently, various serum-free primary cell culture methods have been developed that do not involve the use of animal serums. Since the thymus is comprised of many cell types, such as thymocytes, thymic epithelial cells, macrophages, and fibroblasts, thymic epithelial cells must be isolated for their functional analysis in vitro. This chapter describes the detailed protocol for the selective primary culture of thymic epithelial cells using defined serum-free medium.


Assuntos
Células Epiteliais , Timo , Camundongos , Animais , Timócitos , Técnicas de Cultura de Células , Fibroblastos , Diferenciação Celular
17.
Methods Mol Biol ; 2713: 231-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639127

RESUMO

Alveolar macrophages (AM) are resident macrophages of the lung and play important roles in the maintenance of tissue homeostasis as well as host defense. Here, we describe how they can be harvested from murine lungs, expanded in vitro, and transduced with lentiviral vectors.


Assuntos
Macrófagos Alveolares , Macrófagos , Animais , Camundongos , Tórax
18.
Cureus ; 15(10): e47899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034260

RESUMO

Background Chewing areca nuts can result in an oral disorder known as oral submucous fibrosis (OSF), which has the potential to be cancerous. Although it is only beginning to spread to European and the North American continents, it is highly prevalent in Southeast Asia. The probability of malignant transformation from OSF is raised by chewing tobacco use. In the current research, our objective was to assess the potential anti-fibrosis effects and the ability to prevent malignant transformation through the application of mangosteen pericarp extract. Methodology The Ethical Approval-IHEC/SDC/OMED-2101/23/085 from the institution was obtained to conduct this ex vivo study. The cytotoxicity effect of mangosteen pericarp extract on both normal and fibrotic buccal mucosal fibroblasts originating from OSF tissues was tested. Cell proliferation and cell migration by scratch wound healing assay was examined. Dual staining was done to determine the mode of cell death. Additionally, real-time PCR was utilized to measure the expression of TGF-ß/Smad2/3 signalling, α-SMA, and type I collagen gene expression. Results Mangosteen extract exerted higher cytotoxicity of fibrotic buccal mucosal fibroblasts compared to normal cells. Furthermore, mangosteen-receiving cells exhibited downregulation in the expression of the TGF-ß/Smad2 pathway, as well as reduced expression of α-SMA and type I collagen. Conclusion Findings from this study suggest that mangosteen could serve as a promising agent for averting the progression of oral fibrogenesis and halting the malignancy of the oral epithelium in patients with OSF.

19.
Bio Protoc ; 13(19): e4829, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817903

RESUMO

Corneal epithelium and stroma are the major cellular structures for ocular protection and vision accuracy; they play important roles in corneal wound healing and inflammation under pathological conditions. Unlike human, murine corneal and stromal fibroblast cells are difficult to isolate for cell culture. In our laboratory, we successfully used an ex vivo culture procedure and an enzymatic procedure to isolate, purify, and culture mouse corneal epithelial and stromal fibroblast cells. Key features • Primary cell culture models of a disease are critical for cellular and molecular mechanism studies. • Corneal tissues with the limbus contain stem cells to generate both epithelial and stromal cells. • An ex vivo corneal culture provides a constant generation of primary corneal cells for multiple passages. • The isolated cells are validated by the corneal epithelial cell markers Krt12 and Cdh1 and the stromal fibroblast marker Vim.

20.
Methods Protoc ; 6(5)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37736956

RESUMO

Isolation of African swine fever virus (ASFV) is a critical step towards the identification, titration, characterization, and even modification of the virus. Therefore, it is important to identify a suitable cell line that supports the efficient replication of ASFV for these purposes. This should be achieved even when starting with a low virus load, as in the case of isolating the virus from field samples. This article presents a detailed protocol on the preparation of porcine bone marrow primary (PBMP) cell culture, which has a high sensitivity towards ASFV, resulting in high viral yields with a minimal risk of bacterial contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...