Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 545: 109276, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39299162

RESUMO

Alginates are brown algal polysaccharides consisting of ß-D-mannuronic (M) and α-l-guluronic acid (G) residues linked with 1→4 glycosidic bonds. To functionalize these natural resources for biomedical use, alginates can be chemically modified, including by sulfation. Here regioselective sulfation of alginates at M-2 in DMSO with Py∙SO3 is described, by either sulfating alginates directly or through using alginates with added protecting groups (PG-s), including TBDMS-ether, Piv-, Bz-esters and intramolecular 3,6-lactone. Highest regioselectivity was found by sulfating TBDMS- and Piv-protected alginates, with over 65 % of M-residues being 2-O-sulfated. However significant reduction in molecular weight was found when alginates were sulfated in DMSO. Results from this work will allow a degree of control over substitution patterns in sulfated alginates. This will allow to more accurately determine structure-property relationships in biomedical research.

2.
Chemistry ; : e202403288, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333757

RESUMO

A robust, practical, and sustainable isomerization-suppressed peptide bond formation via acyl sulfonamide, a twisted amide, is disclosed. Tosyl isocyanate and pentafluorobenzyl bromide were applied in combination to activate the peptide C-terminus, which then reacted with an amine to yield an elongated peptide with high stereochemical purity. Careful analysis of NMR spectra of the active intermediate revealed the presence of an intramolecular hydrogen bond, suggesting that the hydrogen bond suppressed Cα-epimerization during amidation. The isomerization suppression by the intramolecular hydrogen bond is expected to be effective even under high dilution conditions, making the present method a powerful tool for the synthesis of complex macrocyclic peptides. In addition to peptide synthesis, the developed synthetic entry to twisted amides can be applied to the investigation of transition metal-catalyzed N-C bond activation. Moreover, the application to the N-C bond activation returned insight into peptide synthesis, leading to the use of sulfonamide as a protecting group of carboxylic acid that can be orthogonally removed in the presence of other conventional protecting groups.

3.
Chembiochem ; : e202400561, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172538

RESUMO

Protein phosphatase-1 (PP1) is a ubiquitous enzyme counteracting hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency and highlight the need for comprehensive in vitro analysis before cellular experiments.

4.
Carbohydr Res ; 544: 109250, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214041

RESUMO

Reported herein is the synthesis of benzyl ß-d-glucopyranoside and its derivatives that provide straightforward access to 3,4-branched glycans. Modes to diversify the synthetic intermediates via introduction of various temporary protecting groups have been demonstrated.


Assuntos
Glucosídeos , Estereoisomerismo , Glucosídeos/síntese química , Glucosídeos/química , Técnicas de Química Sintética , Configuração de Carboidratos , Estrutura Molecular
5.
Angew Chem Int Ed Engl ; : e202411380, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140843

RESUMO

Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages, most importantly it allows for the spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate based systems.

6.
Chemistry ; 30(53): e202402076, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38949119

RESUMO

"Tandem" uncaging systems, in which a photolabile protecting group (PPG) is sensitized by an energy-harvesting antenna, may increase the photosensitivity of PPGs by several orders of magnitude for two-photon (2P) photorelease. Yet, they remain poorly accessible because of arduous multi-step synthesis. In this work, we design efficient tandem uncaging systems by (i) using a convenient assembly of the building blocks relying on click chemistry, (ii) introducing H-bonding induced proximity thus facilitating (iii) photoinduced electron transfer (PeT) as a cooperative mechanism. A strong two-photon absorber electron-donating quadrupolar antenna and various electron-accepting PPGs (mDEAC, MNI or MDNI) were clicked stepwise onto a "tweezer-shaped" pyrido-2,6-dicarboxylate platform whose H-bonding and π-stacking abilities were exploited to keep the antenna and the PPGs in close proximity. The different electron-accepting ability of the PPGs led to dyads with wildly different behaviors. Whilst the MDNI and MNI dyads showed poor dark stability or no photo-uncaging ability due to their too high electron-accepting character, the mDEAC dyad benefited from optimum redox potentials to promote PeT and slow down charge recombination, resulting in enhanced uncaging quantum yield (Φu=0.38) compared to mDEAC (Φu=0.014). This unique combination resulted in large 2P photo-sensitivity in the near-infrared window (240 GM at 710 nm).

7.
Methods Enzymol ; 698: 169-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38886031

RESUMO

Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.


Assuntos
Peptídeos , Tiazolidinas , Tiazolidinas/química , Peptídeos/química , Dicetopiperazinas/química
8.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611709

RESUMO

Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.


Assuntos
Antifibrinolíticos , Técnicas de Síntese em Fase Sólida , Alquilação , Aminoácidos , Resinas Vegetais , Peptídeos
9.
Synthesis (Stuttg) ; 56(7): 1147-1156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655286

RESUMO

Superarmed glycosyl donors have higher reactivity compared to their perbenzylated armed counterparts. Generally, the 2-O- benzoyl-3,4,6-tri-O-benzyl protecting group pattern gives rise to increased reactivity due to an O-2/O-5 cooperative effect. Despite having a high reactivity profile and applicability in many expeditious strategies for glycan synthesis, regioselective introduction of the superarming protecting group pattern is tedious for most sugar series. Reported herein is a streamlined synthetic route to yield superarmed glycosyl donors of the d-gluco and d-galacto series equipped with an ethylthio, phenylthio, p-tolylthio, benzoxazol-2-ylthio, O-allyl, or O-pentenyl anomeric leaving group. This streamlined approach was made possible due to the refinement of the oxidative thioglycosylation reaction of the respective glucal and galactal precursors. The applicability of this approach to the direct formation of disaccharides is also showcased.

10.
Chemistry ; 30(30): e202400479, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545936

RESUMO

The chemical synthesis of complex oligosaccharides relies on efficient and highly reproducible glycosylation reactions. The outcome of a glycosylation is contingent upon several environmental factors, such as temperature, acidity, the presence of residual moisture, as well as the steric, electronic, and conformational aspects of the reactants. Each glycosylation proceeds rapidly and with a high yield within a rather narrow temperature range. For better control over glycosylations and to ensure fast and reliable reactions, a systematic analysis of 18 glycosyl donors revealed the effect of reagent concentration, water content, protecting groups, and structure of the glycosyl donors on the activation temperature. With these insights, we parametrize the first step of the glycosylation reaction to be executed reliably and efficiently.

11.
Beilstein J Org Chem ; 20: 181-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318458

RESUMO

The development of new methods for chemical glycosylation commonly includes comparison of various glycosyl donors. An attempted comparison of chemical properties of two sialic acid-based thioglycoside glycosyl donors, differing only in the substituent at O-9 (trifluoroacetyl vs chloroacetyl), at different concentrations (0.05 and 0.15 mol·L-1) led to mutually excluding conclusions concerning their relative reactivity and selectivity, which prevented us from revealing a possible influence of remote protective groups at O-9 on glycosylation outcome. According to the results of the supramer analysis of the reaction solutions, this issue might be related to the formation of supramers of glycosyl donors differing in structure hence chemical properties. These results seem to imply that comparison of chemical properties of different glycosyl donors may not be as simple and straightforward as it is usually considered.

12.
Chem Biodivers ; 21(2): e202301729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241063

RESUMO

Nature-derived products, like juices and peel extracts of fruits and vegetables, have emerged in recent years as interesting and sustainable alternatives to traditional solvents in several synthetic applications. Herein, we present a green and fast method for the N-acetylation of amino acids, using several bio-based solvents (vinegar, tomato/kiwi/apple peel extracts, lemon juice, etc.). The high reactivity of the amino group is often a limitation in synthetic processes, making its protection a necessary step to achieve pure products and limit side reactions. Therefore, versatile, time-efficient procedures, minimal purification efforts, and good yields are desirable features for these transformations. Our new method meets all these criteria, offering a valuable and eco-friendly alternative to traditional approaches. In detail, we managed to obtain comparable yields to established setups, while improving safety and reducing the environmental impact of the overall process. Most notably, the milder conditions made it possible to avoid the use of running water (saving about 250 L/reaction) and electric-powered cooling devices.


Assuntos
Aminoácidos , Frutas , Solventes , Acetilação , Aminas
13.
Chemistry ; 30(4): e202303501, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37983752

RESUMO

Detailed investigations into the stepwise bis-functionalization of a pillar[5]arene-containing rotaxane building block have been carried out. Upon a first stopper exchange, the pillar[5]arene moiety of the mono-acylated product is preferentially located close to its reactive pentafluorophenyl ester stopper, thus limiting the accessibility to the reactive carbonyl group by the nucleophilic reagents. Selective mono-functionalization is thus very efficient. Introduction of a second stopper is then possible to generate dissymmetrical rotaxanes with different amide stoppers. Moreover, when dethreading is possible upon the second acylation, the pillar[5]arene plays the role of a protecting group allowing the synthesis of dissymmetrical axles that are particularly difficult to prepare under statistical conditions. Finally, detailed conformation analysis of the rotaxanes revealed that the position of the pillar[5]arene moiety on its axle subunit is mainly governed by polar interactions in nonpolar organic solvents, whereas solvophobic effects play a major role in polar solvents.

14.
Chemistry ; 30(9): e202303271, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38149455

RESUMO

It was demonstrated that α-hydroxycarboxamide is an excellent boron-protecting group. The reaction between α-hydroxycarboxamide and organoboronic acids produced stable oxazaborolidinones (OxBs), in which the sp 2 ${{_{{\rm sp}{^{2}}}}}$ -hybridized boron atom was sterically protected by α-hydroxycarboxamide. The alkyl groups of the α-hydroxycarboxamide moiety can dynamically cover the p-orbital of the sp 2 ${{_{{\rm sp}{^{2}}}}}$ -hybridized boron center, creating a small space around the boron atom, allowing for smooth transmetalation by a Pd catalyst and easy deprotection by water. This protecting phenomenon is effective for readily purification, Suzuki-Miyaura coupling reactions with unstable boronic acids and iterative cross-couplings.

15.
ACS Chem Neurosci ; 14(23): 4163-4175, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988406

RESUMO

Phenols confer bioactivity to a plethora of organic compounds. Protecting the phenolic functionality with photoremovable protecting groups (PPGs) sensitive to two-photon excitation (2PE) can block the bioactivity and provide controlled release of these compounds in a spatially and temporally restricted manner by photoactivation with IR light. To develop an efficient 2PE-sensitive PPG for releasing phenols, the (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ) chromophore was functionalized at the C4 position with methyl, morpholine, methoxy, para-tolyl, and 3,4,5-trimethoxyphenyl groups to provide 4-methyl-CyHQ (Me-CyHQ), 4-morpholino-CyHQ (Mor-CyHQ), 4-methoxy-CyHQ (MeO-CyHQ), 4-(p-tolyl)-CyHQ (pTol-CyHQ), and 4-(3,4,5-trimethoxyphenyl)-CyHQ (TMP-CyHQ) PPGs. The probes possess attributes useful for biological use, including high quantum yield (Φu), hydrolytic stability, and good aqueous solubility in physiological conditions. The MeO-CyHQ PPG enhanced the two-photon uncaging action cross section (δu) of dopamine 3.5-fold (0.85 GM) compared to CyHQ (0.24 GM) at 740 nm and 1.49 GM at 720 nm. MeO-CyHQ was used to mediate photoactivation via 2PE of serotonin, rotigotine, N-vanillyl-nonanoylamide (VNA) (a capsaicin analogue), and eugenol. The constructs except rotigotine showed excellent efficiency in 2PE with δu ranging from 0.75 to 1.01 GM at 740 nm and from 1.31 to 1.36 GM at 720 nm high yielding release of the payloads. These probes also performed well by using conventional single photon excitation (1PE). The spatially and temporally controlled release of dopamine from CyHQ-DA and MeO-CyHQ-DA and serotonin (5-HT) from MeO-CyHQ-5HT was quantified in cell culture by using genetically encoded sensors for dopamine and serotonin, respectively. Calcium imaging was employed to quantify the release of VNA and eugenol (EG) from MeO-CyHQ-VNA and MeO-CyHQ-EG, respectively. These tools will enable experiments to understand the intricate mechanisms involved in neurological signaling and the roles played by neurotransmitters, such as dopamine and serotonin, in the activation of their respective receptors.


Assuntos
Fenóis , Serotonina , Fenóis/farmacologia , Eugenol , Preparações de Ação Retardada , Dopamina
16.
Chemistry ; 29(64): e202302288, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37639512

RESUMO

Human milk oligosaccharides (HMO) have emerged as a very active area of research in glycoscience and nutrition. HMO are involved in the early development of infants and may help to prevent certain diseases. The development of chemical methods for obtaining individual HMO aids the global effort dedicated to understanding the roles of these biomolecules. Reported herein is the chemical synthesis of two common core hexasaccharides found in human milk, i. e. para-lacto-N-hexaose (pLNH) and para-lacto-N-neohexaose (pLNnH). After screening multiple leaving groups and temporary protecting group combinations, a 3+3 convergent coupling strategy was found to work best for obtaining these linear glycans.


Assuntos
Leite Humano , Oligossacarídeos , Lactente , Humanos , Leite Humano/química , Oligossacarídeos/química , Polissacarídeos/análise , Hidrolases
17.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570675

RESUMO

We utilized a cycloaromatization reaction driven by relief of excited state antiaromaticity to photouncage aldehydes and ketones. We developed several synthetic routes towards the synthesis of photocaged carbonyls as allylically substituted 3-(2-(arylethynyl)phenyl)prop-2-en-1-ols. A library of photocaged aryl aldehydes and ketones containing donors and acceptors, as well as several photocaged fragrance aldehydes and the steroid 5α-cholestan- 3 -one, were synthesized and demonstrated photouncaging in good to excellent yields.

18.
Chemistry ; 29(59): e202302079, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37530503

RESUMO

The design and synthesis of a new fluorophore containing an arylidene thiazole scaffold resulted in a compound with good photophysical characteristics. Furthermore, the thiazole C5-methyl group was easily modified into specific functional groups (CH2 Br and CH2 OH) for the formation of a series of photocourier molecules containing model compounds (benzoic acids), as well as prodrugs, including salicylic acid, caffeic acid, and chlorambucil via a "benzyl" linker. Spectral characteristics (1 H, 13 C NMR, and high-resolution mass spectra) corresponded to the proposed structures. The photocourier molecules demonstrated absorption with high values of coefficient of molar extinction, exhibited contrasting green emission, and showed good dark stability. The mechanism of the photorelease was investigated through spectral analysis, HPLC-HRMS, and supported by TD-DFT calculations. The photoheterolysis and elimination of carboxylic acids were proved to occur in the excited state, yielding a carbocation as an intermediate moiety. The fluorophore structure provided stability to the carbocation through the delocalization of the positive charge via resonance structures. Viability assessment of Vero cells using the MTT-test confirmed the weak cytotoxicity of prodrugs without irradiation and it increase upon UV-light.

19.
Chemistry ; 29(51): e202301707, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37460442

RESUMO

Functionalization of single-walled carbon nanotubes (SWCNTs) has attracted interest because it alters the near-infrared (NIR) photoluminescence (PL) wavelength and emission efficiency. These modifications depend on the binding configuration and degree of functionalization. Excessive functionalization reduces the emission efficiency as the integrity of the conjugated π system decreases; thus, controlling the degree of functionalization is essential. Because the binding configurations and degree of functionalization are affected by the reagent structure, a stepwise approach combining SWCNTs functionalization and subsequent reactions to introduce functional groups into the addenda could effectively control their PL properties and functionalities. We studied this approach by implementing the reductive alkylation of SWCNTs by using bromoalkanes with t-butyl carbamate (Boc)-protected amino groups and subsequent deprotection and amidation reactions. The reaction products were analyzed based on absorption, PL, and Raman spectroscopy and the Kaiser test. Depending on the structure of the reagent, deprotection and amidation reactions competed with the elimination reaction of addenda, altering the PL properties of the SWCNTs. Furthermore, the elimination reaction was inhibited in the adducts functionalized using dibromoalkane with Boc-protected amino groups, demonstrating that the use of appropriate reagents enables the molecular conversion of the functional groups of SWCNT adducts without affecting their PL properties.

20.
Chembiochem ; 24(16): e202300313, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311168

RESUMO

Aryl diazonium cations are versatile bioconjugation reagents due to their reactivity towards electron-rich aryl residues and secondary amines, but historically their usage has been hampered by both their short lifespan in aqueous solution and the harsh conditions required to generate them in situ. Triazabutadienes address many of these issues as they are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV-exposure rapidly release aryl diazonium cations under biologically-relevant conditions. This paper describes the synthesis of a novel maleimide-functionalized triazabutadiene suitable for site-selectively installing aryl diazonium cations into proteins at neutral pH; we show reaction with this molecule and a surface-cysteine of a thiol disulfide oxidoreductase. Through photoactivation of the site-selectively installed triazabutadiene motifs, we generate aryl diazonium functionality, which we further derivatize via azo-bond formation to electron-rich aryl species, showcasing the potential utility of this strategy for the generation of photoswitches or protein-drug conjugates.


Assuntos
Proteínas de Membrana , Concentração de Íons de Hidrogênio , Maleimidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA