Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(11): 5574-5584, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38468388

RESUMO

To explore the use of nonfood plant-derived secondary metabolites for plant protection, a series of ester derivatives for controlling the major migratory agricultural pests were obtained by structural modification of andrographolide, a labdane diterpenoid isolated from Andrographis paniculata. Compound Id showed good insecticidal activity against the fall armyworm Spodoptera frugiperda Smith. Compounds IIa (LC50: 0.382 mg/mL) and IIIc (LC50: 0.563 mg/mL), the acaricidal activities of which were, respectively, 13.1 and 8.9 times that of andrographolide (LC50: 4.996 mg/mL), exhibited strong acaricidal and control effects against Tetranychus cinnabarinus Boisduval. Against Aphis citricola Van der Goot, compounds IIIc and IVb displayed 3.9- and 3.7-fold pronounced aphicidal activity of andrographolide. Effects of compound Id on three protective enzymes (superoxide dismutase, peroxidase, and catalase) of S. frugiperda were also observed. The obvious differences of epidermal cuticle structures of mites treated with compound IIa were determined by scanning electron microscopy. Structure-activity relationships indicated that 14-ester derivatives of andrographolide showed potential insecticidal/acaricidal activities and can be further utilized as lead compounds.


Assuntos
Acaricidas , Produtos Biológicos , Diterpenos , Inseticidas , Praguicidas , Animais , Praguicidas/química , Estrutura Molecular , Produtos Biológicos/química , Ésteres/química , Inseticidas/química , Relação Estrutura-Atividade , Acaricidas/química , Diterpenos/farmacologia , Diterpenos/química
2.
Gene ; 908: 148290, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38367853

RESUMO

Viral diseases are crucial determinants affecting tobacco cultivation, leading to a substantial annual decrease in production. Previous studies have demonstrated the regulatory function of the C3HC4 family of plant zinc finger proteins in combating bacterial diseases. However, it remains to be clarified whether this protein family also plays a role in regulating resistance against plant viruses. In this study, the successful cloning of the zinc finger protein coding gene NbZFP1 from Nicotiana benthamiana has been achieved. The full-length coding sequence of NbZFP1 is 576 bp. Further examination and analysis of this gene revealed its functional properties. The induction of NbZFP1 transcription in N. benthamiana has been observed in response to TMV, CMV, and PVY. Transgenic N. benthamiana plants over-expressing NbZFP1 demonstrated a notable augmentation in the production of chlorophyll a (P < 0.05). Moreover, NbZFP1-overexpressing tobacco exhibited significant resistance to TMV, CMV, and PVY, as evidenced by a decrease in virus copies (P < 0.05). In addition, the defense enzymes activities of PAL, POD, and CAT experienced a significant increase (P < 0.05). The up-regulated expression of genes of NbPAL, NbNPR1 and NbPR-1a, which play a crucial role in SA mediated defense, indicated that the NbZFP1 holds promise in enhancing the virus resistance of tobacco plant. Importantly, the results demonstrate that NbZFP1 can be considered as a viable candidate gene for the cultivation of crops with enhanced virus resistance.


Assuntos
Infecções por Citomegalovirus , Nicotiana , Nicotiana/genética , Clorofila A , Dedos de Zinco/genética , Antivirais , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plants (Basel) ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514308

RESUMO

Water shortages and crop responses to drought and salt stress are related to the efficient use of water resources and are closely related to food security. In addition, PEG or NaCl stress alone affect the root hydraulic conductivity (Lpr). However, the effects of combined PEG and NaCl stress on Lpr and the differences among wheat varieties are unknown. We investigated the effects of combined PEG and NaCl stress on the root parameters, nitrogen (N) and carbon content, antioxidant enzymes, osmotic adjustment, changes in sodium and potassium, and root hydraulic conductivity of Yannong 1212, Heng 4399, and Xinmai 19. PEG and NaCl stress appreciably decreased the root length (RL), root surface area (RS), root volume (RV), K+ and N content in shoots and roots, and Lpr of the three wheat varieties, while the antioxidant enzyme activity, malondialdehyde (MDA), osmotic adjustment, nonstructural carbon and Na+ content in shoots and roots, etc., remarkably remained increased. Furthermore, the root hydraulic conductivity had the greatest positive association with traits such as RL, RS, and N and K+ content in the shoots of the three wheat varieties. Moreover, the RL/RS directly and actively determined the Lpr, and it had an extremely positive effect on the N content in the shoots of wheat seedlings. Collectively, most of the root characteristics in the wheat seedlings decreased under stress conditions, resulting in a reduction in Lpr. As a result, the ability to transport nutrients-especially N-from the roots to the shoots was affected. Therefore, our study provides a novel insight into the physiological mechanisms of Lpr.

4.
J Chem Ecol ; 49(3-4): 205-213, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36862358

RESUMO

Investigating the effects of various host plants on protective and detoxifying enzyme activities in insects could provide insights into the adaptation mechanisms of insects to host plants. In the present study, we measured superoxide dismutase (SOD), peroxidase (POD), catalase(CAT), carboxylesterase(CarE), acetylcholinesterase (AchE), and glutathione S-transferase (GST) activity levels in Heterolocha jinyinhuaphaga Chu (Lepidoptera: Geometridae) larvae fed on four honeysuckle varieties (wild variety, Jiufeng 1, Xiangshui 1, and Xiangshui 2). The results showed that levels of SOD, POD, CAT, CarE, AchE, and GST activities in H. jinyinhuaphaga larvae fed on the four honeysuckle varieties differed. The enzyme activity levels were the highest when larvae were fed on the wild variety, followed by Jiufeng 1 and Xiangshui 2, and the lowest when fed on Xiangshui 1. Furthermore, the enzyme activity levels increased with an increase in larval age. According to the results of two - way analysis of variance, the interaction between host plants and larval age had no significant effect on SOD, POD, CAT, CarE, AchE, and GST activities in H. jinyinhuaphaga larvae (p ˃0.05).


Assuntos
Lonicera , Mariposas , Animais , Larva , Acetilcolinesterase/farmacologia , Superóxido Dismutase/farmacologia , Peroxidase , Plantas
5.
Insects ; 14(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975945

RESUMO

Spodoptera frugiperda is one of the most destructive crop pests in the world. Metarhizium rileyi is an entomopathogenic fungus specific for noctuid pests and is a very promising prospect in biological control against S. frugiperda. Two M. rileyi strains (XSBN200920 and HNQLZ200714) isolated from infected S. frugiperda were used to evaluate the virulence and biocontrol potential to different stages and instars of S. frugiperda. The results showed that XSBN200920 was significantly more virulent than HNQLZ200714 to eggs, larvae, pupae, and adults of S. frugiperda. In the larvae infected with the two M. rileyi strains, the activity of three protective enzymes (including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT)) and two detoxifying enzymes (including glutathione-S transferase (GST) and carboxylesterase (CarE)) increased firstly and then decreased. The expression levels of protective enzymes and detoxification enzymes in larvae treated with XSBN200920 were greater than with HNQLZ200714. Furthermore, antioxidant stress-related gene (MrSOD and MrCAT family genes) expression in the two strains was measured by RT-qPCR (real-time quantitative PCR). The expression of these genes was significantly higher in the XSBN200920 strain compared to HNQLZ200714. There were also significant differences in the sensitivity of the two strains to the growth of different carbon and nitrogen sources and oxidative stress agents. In addition, the activity expression of antioxidant enzymes on the third day of culturing in XSBN200920 was significantly higher than with HNQLZ200714. In summary, the high virulence of M. rileyi XSBN200920 was not only determined by the expression levels of protective and detoxifying enzymes of the host but also regulated by the growth of entomogenic fungi and the resistance to the oxidative stress against S. frugiperda at different stages and instars. This study provides a theoretical fundament for the systematic control of Spodoptera frugiperda using Metarhizium rileyi.

6.
Front Plant Sci ; 14: 1342219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328618

RESUMO

Legumes play a crucial role in the restoration and utilization of salinized grassland. To explore the physiological response mechanism of Astragalus membranaceus and Medicago sativa seedlings to salt stress, salt stress culture experiments with five NaCl concentration treatments (0 mmol/L, 50 mmol/L, 100 mmol/L, 200 mmol/L, and 300 mmol/L) were conducted on these two legume seedlings. Morphological characteristics, physiological features, biomass, and the protective enzyme system were measured for both seedlings. Correlation analysis, principal component analysis (PCA), and membership function analysis (MFA) were conducted for each index. Structural equation modeling (SEM) was employed to analyze the salt stress pathways of plants. The results indicated that number of primary branches (PBN), ascorbate peroxidase (APX) activity in stems and leaves, catalase (CAT) activity in roots, etc. were identified as the primary indicators for evaluating the salt tolerance of A. membranaceus during its seedling growth period. And CAT and peroxidase (POD) activity in roots, POD and superoxide dismutase (SOD) activity in stems and leaves, etc. were identified as the primary indicators for evaluating the salt tolerance of M. sativa during its growth period. Plant morphological characteristics, physiological indexes, and underground biomass (UGB) were directly affected by salinity, while physiological indexes indirectly affected the degree of leaf succulence (LSD). Regarding the response of the protective enzyme system to salt stress, the activity of POD and APX increased in A. membranaceus, while the activity of CAT increased in M. sativa. Our findings suggest that salt stress directly affects the growth strategies of legumes. Furthermore, the response of the protective enzyme system and potential cell membrane damage to salinity were very different in the two legumes.

7.
J Econ Entomol ; 115(6): 1869-1876, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240118

RESUMO

Orius sauteri (Poppius) is an important predator of many economically important insect pests. The mass rearing of O. sauteri is difficult, limiting its application in pest control. Here we assessed the nutritional quality of eggs of Sitotroga cerealella (Olivier), Agrotis ypsilon (Rottemberg), or Spodoptera litura (Fabricius), and their potential for rearing O. sauteri in the laboratory for two generations. Of species tested, S. cerealella eggs resulted in the highest survival and reproduction of O. sauteri compared to the other two lepidopteran species. Eggs of A. ypsilon were a suitable diet for the nymphal stage, which developed faster on A. ysilon eggs than those of S. cerealella eggs. Conversely, eggs of S. litura were not a suitable diet for O. sauteri, and they disrupted the development and reproduction of O. sauteri. Sitotroga cerealella eggs showed advantages in all the nutritional components evaluated. Orius sauteri fed S. litura eggs contained significantly lower protein levels than those fed on the other eggs tested. Spodoptera litura eggs significantly enhanced the CAT activity in O. sauteri, which suggests that some components from S. litura eggs harmed the development and reproduction of O. sauteri. Based on these results, we suggest using a combined diet for mass rearing of the pirate bug, feeding the nymphs and adults with A. ypsilon eggs and S. cerealella eggs, respectively. This study contributes to the discovery of artificial diets for mass rearing O. sauteri and other Orius species in the future.


Assuntos
Heterópteros , Mariposas , Animais , Comportamento Predatório , Ninfa , Reprodução
8.
Front Plant Sci ; 12: 809692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173752

RESUMO

Soybean is an important cash crop in the world, and drought is the main reason for the loss of soybean plants productivity, with drought stress during the most water-sensitive flowering period of soybeans. In this article, drought-tolerant variety Heinong 44 (HN44) and drought-sensitive variety Heinong 65 (HN65) were used as experimental materials. Drought treatment was carried out at the early flowering stage. The method of controlling soil moisture content was used to simulate different degrees of drought, and the physiological changes of these two varieties of soybean under different soil moisture contents were studied. The results showed that with a decrease in soil moisture content, the content of malondialdehyde (MDA) in soybean leaves increased significantly; the activities of peroxidase (POD), catalase (CAT), and ascorbic acid peroxidase (APX) increased first and then decreased; the content of proline, soluble sugar, and soluble protein increased; and the total antioxidant capacity (T-AOC) increased significantly. When the soil moisture content was 15.5%, the degree of membrane lipid peroxidation, osmotic regulatory substances, antioxidant enzyme activity, and T-AOC increased the most, and the decrease in drought-tolerant variety HN44 was significantly less than that of drought-sensitive variety HN65. Our research reveals the response law of soybean crops to physiological characteristics under water deficit and provides theoretical basis and guiding significance for drought-resistant cultivation and breeding of soybean.

9.
Environ Pollut ; 268(Pt A): 115847, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130443

RESUMO

Cadmium (Cd) pollution is currently the most serious type of heavy metal pollution throughout the world. Previous studies have shown that Cd elevates the mortality of paddy field spiders, but the lethal mechanism remains to be explored profoundly. In the present study, we measured the activities of protective enzymes (acetylcholinesterase, glutathione peroxidase, phenol oxidase) and a heavy metal chelating protein (metallothionein) in the pond wolf spider Pardosa pseudoannulata after Cd exposure. The results indicated that Cd initially increased the enzyme activities and protein concentration of the spider after 10- and 20-day exposure before inhibiting them at 30-day exposure. Further analysis showed that the enzyme activities in the cephalothorax were inhibited to some extent. Since the cephalothorax region contains important venom glands, we performed transcriptome sequencing (RNA-seq) analysis of the venom glands collected from the spiders after long-term Cd exposure. RNA-seq yielded a total of 2826 differentially expressed genes (DEGs), and most of the DEGs were annotated into the process of protein synthesis, processing and degradation. Furthermore, a mass of genes involved in protein recognition and endoplasmic reticulum (ER) -associated protein degradation were down-regulated. The reduction of protease activities supports the view that protein synthesis and degradation in organelles and cytoplasm were dramatically inhibited. Collectively, our outcomes illustrate that Cd poses adverse effects on the expression of protective enzymes and protein, which potentially down-regulates the immune function in the venom glands of the spiders via the alteration of protein processing and degradation in the ER.


Assuntos
Cádmio , Aranhas , Animais , Cádmio/toxicidade , Metalotioneína , Aranhas/genética , Transcriptoma
10.
Environ Entomol ; 49(5): 1191-1197, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-32794573

RESUMO

The western flower thrips, Frankliniella occidentalis, is a major invasive pest of commercially important crops worldwide. We compared the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and the expressions of two putative SOD and two putative POD sequences in second instar larvae and adults after three generations of adaptation to kidney bean and broad bean plants. The results showed that the SOD, POD, and CAT activities in adults were significantly higher than those in the second instar larvae. The SOD activities were significantly higher in both the second instar larvae and the adults fed on kidney bean (Phaseolus vulgaris) plants versus broad bean (Vicia faba) plants, whereas the POD and CAT activities showed the opposite trend. The gene expression data showed that the FoPOD-2 expression levels were lower in the second instar larvae after three generations of feeding on broad bean plants versus kidney bean plants. The expression levels of FoSOD-1 and FoSOD-2, and FoPOD-1 under broad bean plant treatment were higher than those under kidney bean plant treatment. Additionally, gene expression fluctuated among the different generations. Our results indicated that western flower thrips demonstrated plasticity in gene expression and activity of protective enzymes, which is related to their adaptability to the host plants. Western flower thrips can change the expression of protective enzyme genes and enzyme activity in vivo to better adapt to kidney bean and broad bean plants.


Assuntos
Phaseolus , Tisanópteros , Animais , Produtos Agrícolas , Flores , Larva , Phaseolus/genética
11.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1620-1626, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32489041

RESUMO

By analyzing the effects of light intensity on the growth, physiological and biochemical characteristics of Chrysanthemum indicum, the light intensity suitable for the growth of Ch. indicum was revealed, which provided a reference for the planting of Ch. indicum. There were five treatment groups of Ch. indicum, which was planted under 100%, 80%, 60%, 40% and 20% all natural light intensity conditions, respectively. In the meantime, these indicators of photosynthetic physiology, such as relative growth, photosynthetic pigment content, photosynthetic parameters, and chlorophyll fluorescence parameters etc. were measured in the peak period of growth of Ch. indicum as well as related indicators of the protective enzyme system, and the ultrastructure of chloroplast was observed with the use of transmission electron microscope technique. In our study, the results showed that the leaves of Ch. indicum occurred yellow phenomenon in different degrees when Ch. indicum was placed at more than 80% of the total natural light intensity condition, the height and stem diameter of plant reached the maximum at 60% of the total natural light intensity. More importantly, the number of branches of Ch. indicum was significantly increased under the total natural light intensity of more than 60%. Both the content of photosynthetic pigment and net photosynthetic rate were negatively correlated with light intensity, while photosynthetic parameters and chlorophyll fluorescence parameters showed a trend of rising first and then decreasing with the decrease of light intensity. The physiological indexes of Ch.indicum including stomatal conductivity, intracellular CO_2 concentration, transpiration rate, water use efficiency and actual photochemical quantum yield of PS Ⅱ had been determined, and the results showed that all of them were at the highest level under 60% total natural light intensity condition. The chloroplast structure of Ch. indicum was not obviously abnormal under 60% and 80% total natural light intensity treatments, but the stroma lamella was broken under 100% total natural light intensity, and not only the number of chloroplast, but also the number and volume of starch grains were decreased significantly under 20% and 40% total natural light intensity. With the decrease of light intensity, the enzymes activities of SOD and CAT decreased, the activity of POD increased in the early stage and decreased in the later stage, and the content of MDA showed a decreasing trend. The analysis of results indicated that the Ch. indicum can grow under 20%-100% total natural light intensity, but the best growth condition was under 60% total natural light intensity.


Assuntos
Chrysanthemum , Clorofila , Cloroplastos , Luz , Fotossíntese , Folhas de Planta
12.
Protoplasma ; 257(4): 1221-1230, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32328799

RESUMO

Keteleeria fortunei var. cyclolepis is an ideal tree species for mountain afforestation, timber forests, and landscaping. Its pollination process can be affected by the rainy season, making it difficult to pollinate the massive female cones, which leads to a high abortion rate and low quality of seeds. Here, we observed the pollen morphology of K. f. cyclolepis using scanning electron and light microscopes, investigated the characteristics of its in vitro germination by the detached method, and explored the effect of different storage temperatures and times on the pollen germination rate and the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Our results indicated that the pollen of K. f. cyclolepis is a five-cell pollen, comprising one noumenon and two air sacs, both of which were oval in polar view. The optimal condition for pollen germination of K. f. cyclolepis was 240 g/L sucrose + 70 mg/L CaCl2 + 210 mg/L H3BO3 at 24 °C and pH 6.0, resulting in a germination rate of 45.0%. The effects of different storage temperature and time on pollen germination rate varied significantly. The best storage temperature was - 80 °C, at which the germination rate was 20.9% after 365 days of storage, and the activity of three protective enzymes remained relatively high, representing relatively strong antioxidation and antiaging activity. Stepwise regression analysis showed that SOD was the main factor affecting the pollen germination rate of K. f. cyclolepis. The function of the three protective enzymes differed under various temperatures, for example, SOD served as a sensitive protective enzyme at room temperature, - 20 °C and - 80 °C, whereas both SOD and CAT served as sensitive protective enzymes at 4 °C.


Assuntos
Cruzamento/métodos , Germinação/fisiologia , Plantas/química , Pólen/química
13.
Chemosphere ; 250: 126321, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32135440

RESUMO

The lacewing, Chrysoperla sinica, is an important predatory insect, which plays an important role in the integrated pest management of agroforestry pests. However, the extensive use of insecticides negatively affects C. sinica. The acute toxicity, risk level, and, sublethal effects on growth and production, predation ability, protective enzyme activity and genotoxicity of four insecticides: indoxacarb, emamectin benzoate, imidacloprid and lambda-cyhalothrin to C. sinica were studied. The results showed that all four insecticides had lethal toxicity to larvae of C. sinica. Among them, emamectin benzoate had the highest toxicity with LC50 value of 7.41 mg/L. The insecticides also had different effects on the growth and reproduction of C. sinica, of which lambda-cyhalothrin had the greatest impacts. Even at a very low LC1 concentration (3.37 mg/L), it had strong impacts on the growth, reproduction and predatory ability of C. sinica. The four insecticides also caused a decrease in the predatory ability of the lacewing, of which lambda-cyhalothrin had the greatest effect. During the larval stage, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly decreased by the four insecticides. At the pupal and adult stages, the effects of the four insecticides on the activities of protective enzymes were different, and the activities of SOD, CAT and POD decreased or increased. Indoxacarb and lambda-cyhalothrin exposure induced DNA damage in the haemocytes of C. sinica and produced obvious genotoxicity. These results provide important scientific basis for the rational use of these insecticides and the protection and utilization of lacewing.


Assuntos
Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrilas , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Piretrinas , Testes de Toxicidade Aguda
14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-873068

RESUMO

Objective:To explore the allelopathic effect of garlic volatiles on Angelica sinensis by studying the allelopathic effect of both living garlicand isolated garlic sprout volatiles on A. sinensis, and provide certain theoretical basis for Angelica garlic interplanting mode to alleviate the stress of continuous cropping A. sinensis. Method:Through the determination and analysis of the growth indexes and leaf protective enzyme system of A. sinensis,the adaptability of A. sinensis to continuous cropping stress and non-continuous cropping stress environment under the influence of the volatiles of living garlic and isolated garlic sprout as well as the mechanism of resistant growth and development were discussed. Result:The overall analysis showed that the growth index and leaf protective enzyme activity of isolated garlic sprout with alleloinductive treatment(DC2)under continuous cropping stress were increased by 17.51% and 48.34% respectively as compared with those under single cropping(CK1). The growth index and leaf protective enzyme activity of angelica under continuous cropping and intercropping(LC2)were increased by 16.63% and 36.65% as compared with those under monocrop cropping(CK2). Those indicated that the volatiles of isolated garlic sprout had more significant effect than those of live garlic on alleviating the stress of continuous cropping of A. sinensis. Conclusion:Regardless of the presence of continuous cropping obstacle,appropriate concentrations of living garlic and isolated garlic sprout volatiles had an allelopathic promoting effect on angelica root growth index and leaf protective enzyme activity,and the effect was more obvious in continuous cropping stress conditions,so intercropping garlic has a certain role in alleviating angelica's continuous cropping stress.

15.
J Econ Entomol ; 112(3): 1175-1182, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30916750

RESUMO

Flavonoids are secondary metabolites that help plants resist insect attack, but pest insects have evolved enzymes that reduce the toxicity of these secondary metabolites. We studied the response of the grasshopper Oedaleus asiaticus Bey-Bienko fed different concentrations of quercetin, a representative flavonoid. Oedaleus asiaticus growth (survival rate and growth rate) was significantly reduced at high quercetin concentrations. Reactive oxygen species (ROS) increased significantly in response to the diet stress associated with high quercetin concentrations. Gene expression and protein phosphorylation level of the IGF→FOXO cascade related to the stress response in the O. asiaticus insulin-like signaling pathway (ILP) were also reduced. Multiple protective enzyme activities were regulated by FOXO. Mixed-function oxidase (MFO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were all significantly increased with exposure to high quercetin concentrations. Quercetin negatively regulated the ILP pathway, and was detrimental to O. asiaticus growth and survival, as more energy was required for detoxification. This study showed how flavonoids impact on O. asiaticus biochemical pathways, physiology, and development. Flavonoids offer a new option for the development of biological pesticides for application to grasshopper biological control.


Assuntos
Gafanhotos , Animais , Crescimento e Desenvolvimento , Plantas , Quercetina , Transdução de Sinais
16.
Environ Sci Pollut Res Int ; 26(8): 8312-8324, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706274

RESUMO

Protein tyrosine phosphatase (PTPs) and protein tyrosine kinase (PTKs) genes are responsible for the regulation of insect insulin-like pathway (ILP), cells growth, metabolism initiation, gene transcription and observing immune response. Signal transduction in insect cell is also associated with PTPs and PTKs. The grasshopper (Oedaleus asiaticus) 'Bey-Bienko' were treated with dsRNA of protein tyrosine non-receptor type 4 (PTPN4) and protein tyrosine kinase 5 (PTK5) along with control (water). Applying dsPTK5 treatments in 5th instar of Oedaleus asiaticus, significant reduction was recorded in body dry mass, growth rate and overall performance except survival rate. Whereas with PTPN4, no such significant impact on all of these growth parameters was recorded. Expression of genes in ILP 5th instar of Oedaleus asiaticus by the application of dsPTPN4 and dsPTK5 revealed that PTK, INSR (insulin receptor), IRS (insulin receptor substrate), PI3K (phosphoinositide 3-kinase), PDK (3-phosphoinositide-dependent protein kinase), Akt (protein kinase B) and FOXO (forkhead transcription factor) significantly expressed with downregulation except PTPN4, which remained non-significant. On the other hand, the phosphorylation level of ILP four proteins in O. asiaticus with the treatment of dsPTPN4 and dsPTK5 significantly affected P-IRS and P-FOXO, while P-INSR and P-AKT remained stable at the probability level of 5%. This indicated that the stress response in the O. asiaticus insulin-like signalling pathway (ILP) reduced. Regarding association of protective enzymatic activities, ROS (relative oxygen species), CAT (catalase) and PO (phenol oxidase) increased significantly with exposure to dsPTK5 as compared to dsPTPN4 and control, while exposure of 5th instar of O. asiaticus to dsPTPN4 treatment slightly raised CAT and PO activities with but significant contribution. No such significant effect on MFO and POD was seen using dsPTPN4 and dsPTK5. This showed that in the ILP of O. asiaticus, PTK5 was detrimental to growth, body mass and overall performance, which ultimately benefited insect detoxification with high-energy cost.


Assuntos
Gafanhotos/crescimento & desenvolvimento , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gafanhotos/genética , Gafanhotos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais
17.
BMC Plant Biol ; 18(1): 289, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463523

RESUMO

BACKGROUND: Arbuscular mycorrhizal (AM) fungi form symbiotic associations with host plants can protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. However, the molecular mechanisms of how the arbuscular mycorrhizal fungi and host plant association on atrazine stress were still poorly understood. To better characterize how arbuscular mycorrhizal fungi and host plant interactions increase atrazine stress, we performed physiological and proteomic analysis of Funneliformis mosseae (mycorrhizal fungi) and Medicago sativa (alfalfa) association under atrazine stress. RESULTS: The results showed that in the Arbuscular mycorrhizal, protective enzymes were up regulated and the malondialdehyde content increased relative to those of non-mycorrhizal M.sativa. We also examined the atrazine degradation rates within the nutrient solution, and a 44.43% reduction was observed with the mycorrhizal M.sativa, with 30.83% of the reduction attributed to F. mosseae. The accumulation content in root and stem of mycorrhizal M.sativa were obviously increased 11.89% and 16.33% than those of non- mycorrhizal M.sativa. The activity of PPO, POD, CAT and SOD in mycorrhizal M.sativa were obviously higher than non mycorrhizal M.sativa under atrazine stess. We identified differential root proteins using isobaric tags for relative and absolute quantization coupled with liquid chromatography-mass spectrometry, with 533 proteins identified (276 unregulated and 257 downregulated). The differentially expressed proteins were further examined using GO, BLAST comparisons, and a literature inquiry and were classified into the categories of atrazine degradation (37.1%); atrazine stress response (28.6%); plant immune responses (14.3%); translation, synthesis, and processing (10%); and signal transduction and biological processes (10%). Furthermore, we identified glycosyl transferase, glutathione S-transferase, laccase, cytochrome P450 monooxygenase, peroxidase, and other proteins closely related to the degradation process. CONCLUSIONS: Mycorrhizal Medicago showed improved atrazine degradation within the culturing medium and increased atrazine enrichment in the roots and stems. Additionally, AMF increased the plant root response to atrazine, with relevant enzymes up regulated and toxic effects alleviated. Overall, the findings of this study show that AMF played an important role in easing atrazine stress in plants and contributed to atrazine remediation and further contributed to the understanding of the molecular mechanism associated with atrazine stresses and potential mycorrhizal contributions in M.sativa.


Assuntos
Atrazina/toxicidade , Glomeromycota/metabolismo , Herbicidas/toxicidade , Medicago sativa/metabolismo , Micorrizas/metabolismo , Proteoma/efeitos dos fármacos , Poluentes do Solo/toxicidade , Atrazina/metabolismo , Biodegradação Ambiental , Glomeromycota/efeitos dos fármacos , Herbicidas/metabolismo , Medicago sativa/efeitos dos fármacos , Medicago sativa/microbiologia , Micorrizas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismo , Simbiose
18.
J Plant Physiol ; 230: 33-39, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144693

RESUMO

Atractylodes macrocephala Koidz (A. macrocephala) is a traditional Chinese medicine that has been widely used in China, Japan, and Korea due to its health benefits. Autotoxicity, as one of the major problems hindering continuous cultivation of A. macrocephala, has been reported to inhibit plant growth by various means. However, the impact of autotoxicity on the plant immune system is rarely reported. In this study, 2, 4-Ditertbutyl phenol (2,4-DP), an autotoxic compound, isolated from root exudates and rhizosphere soil of A. macrocephala was identified by gas chromatography-mass spectrometry (GC-MS). The results of germination trials showed that 2,4-DP had a significant inhibitory effect on seed germination. In addition, in non-inoculated seedlings, three concentrations of 2,4-DP (0.1, 1 and 10 mmol/L) affected indicators of systemic acquired resistance (SAR): accumulation of salicylic acid (SA), activities of protective enzymes, atractylenolides contents, and increased the disease index (DI). In inoculated seedlings, 2,4-DP decreased indicators of SAR and increased the DIs at low and high concentrations but increased indicators of SAR and decreased the DI at a moderate concentration. These results suggest that 2,4-DP has an inhibitory effect on the plant immune system, but it can induce the SAR at a certain concentration by controlling the pathogenic fungi.


Assuntos
Atractylodes/fisiologia , Fenóis/isolamento & purificação , Imunidade Vegetal/fisiologia , Atractylodes/química , Catalase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Peroxidase/metabolismo , Fenóis/farmacologia , Raízes de Plantas/química , Rizosfera , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
19.
Ying Yong Sheng Tai Xue Bao ; 29(6): 1759-1767, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29974683

RESUMO

An experiment was conducted to examine the effects of drought and rewatering on growth and photosynthetic physioecological characteristics of Xanthoceras sorbifolia, with 2-year-old seedlings as test materials. There are three treatments, i.e., light drought stress (soil water content 14.3%-16.2%), moderate drought stress(10.6%-12.5%) and severe drought stress (6.8%-8.7%), with the control (21.8%-23.7%). The results showed that with the increases of drought stress, the dry mass per plant, height, basal diameter, leaf number, and leaf area significantly decreased, and length of the main root and the secondary root increased. The gas exchange parameters gradually decreased with the increases of drought stress. The level of Pn was caused by stomatal factors from 10:00 to 14:00 and by non-stomatal factors after 14:00. Apparent CO2 use efficiency (CUE) of X. sorbifolia was obviously increased under the moderate and severe drought stress. With the increases of drought stress, Fv/Fo, Fv/Fm, qP, ETR and ФPS2 gradually decreased, and NPQ gradually increased. The changes of all those characters after rewatering were contrary to those after drought. After rewatering for eight days, Fv/Fo, Fv/Fm, qP, ETR, ФPS2 were significantly higher than that of drought stress treated for 30 days. With the increases of drought stress, SOD and POD activities and MDA content gradually increased, but CAT activity decreased, showing the contrary changes after rewatering. After rewatering, the root activity under drought stress increased. X. sorbifolia was strongly resistant to heavy drought stress, and thus could be widely used as energy or garden plants in garden landscaping in North China.


Assuntos
Secas , Fotossíntese , Sapindaceae/fisiologia , China , Clorofila , Folhas de Planta , Água
20.
Arch Microbiol ; 200(6): 921-927, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29525826

RESUMO

The research results of the growth-promoting effects of endophytic bacteria on Phyllostachys edulis indicated that the growth-promoting endophytic bacteria could improve photosynthesis in P. edulis leaves. The photosynthetic rate, transpiration rate, and the stomatal conductance in P. edulis treated with endophytic bacteria were all higher than in the control group. Endophytic bacteria could also increase the chlorophyll content and the protective enzyme activities in P. edulis, improving their reactions to the adverse environmental conditions. Through injection treatments with growth-promoting endophytic bacteria, the catalase, superoxide dismutase (SOD), peroxidase activity, soluble protein content, and soluble sugar content in P. edulis were all higher than in the control group, except for the malondialdehyde content, which was lower than in the control group.


Assuntos
Bactérias/isolamento & purificação , Bambusa/microbiologia , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bambusa/crescimento & desenvolvimento , Bambusa/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Endófitos/classificação , Endófitos/genética , Malondialdeído/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...