Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
bioRxiv ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39091803

RESUMO

Many proteins form paralogous multimers - molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), a α2ß2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition was simple. One hydrophobic substitution in subunit ß after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous - involving the same surface patch on interacting subunits, rotated 180° relative to each other - but the symmetry is slightly imperfect. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric vs homomeric interactions. Many multimers are isologous, and symmetry in proteins is always imperfect; our findings therefore suggest that elaborate and specific molecular complexes may often evolve via simple genetic and physical mechanisms.

2.
Protein Sci ; 33(8): e5094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989636

RESUMO

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.


Assuntos
Proteínas de Arcabouço Homer , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/química , Proteínas de Arcabouço Homer/genética , Humanos , Domínios Proteicos , Ligação Proteica , Motivos de Aminoácidos
3.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38989909

RESUMO

Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.


Assuntos
Moléculas de Adesão Celular , Proteínas de Drosophila , Evolução Molecular , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Filogenia , Duplicação Gênica , Drosophila/genética , Culicidae/genética
4.
Elife ; 122024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078397

RESUMO

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.


Assuntos
Epistasia Genética , Proteínas de Membrana , Dobramento de Proteína , Receptores LHRH , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores LHRH/química , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Mutação , Estabilidade Proteica , Membrana Celular/metabolismo
5.
J Mol Biol ; : 168717, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053689

RESUMO

Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.

6.
J Exp Biol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022896

RESUMO

The relationship between protein stability and functional evolution is little explored in proteins purified from natural sources. Here we investigate a novel family of egg proteins (Perivitellin-1, PV1) from Pomacea snails. Their remarkable stability and clade-related functions in most derived clades (Canaliculata and Bridgesii) make them excellent candidates for exploring this issue. To that aim, we studied PV1 (PpaPV1) from the most basal lineage, Flagellata. PpaPV1 displays unparalleled structural and kinetic stability, surpassing PV1s from derived clades, ranking among the most hyperstable proteins documented in nature. Its spectral features contribute to a pale egg coloration, exhibiting a milder glycan binding lectin activity with a narrower specificity than PV1s from the closely related Bridgesii clade. These findings provide evidence for substantial structural and functional changes throughout the genus' PV1 evolution. We observed that structural and kinetic stability decreases in a clade-related fashion and was associated with large variations in defensive traits. For instance, pale PpaPV1 lectin turns potent in the Bridgesii clade adversely affecting gut morphology, while giving rise to brightly colored PV1s providing eggs with a conspicuous, likely warning signal in the Canaliculata clade. This work provides a comprehensive comparative analysis of PV1s from various apple snail species within a phylogenetic framework, offering insights into the interplay among their structural features, stability profiles, and functional roles. More broadly, our work provides one of the first examples from natural evolution showing the crucial link among protein structure, stability, and evolution of new functions.

7.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913681

RESUMO

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.


Assuntos
Evolução Molecular , Simulação de Dinâmica Molecular , Estabilidade Proteica , Cristalografia por Raios X , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Estabilidade Enzimática
8.
Proc Natl Acad Sci U S A ; 121(27): e2311807121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913893

RESUMO

Machine learning has been proposed as an alternative to theoretical modeling when dealing with complex problems in biological physics. However, in this perspective, we argue that a more successful approach is a proper combination of these two methodologies. We discuss how ideas coming from physical modeling neuronal processing led to early formulations of computational neural networks, e.g., Hopfield networks. We then show how modern learning approaches like Potts models, Boltzmann machines, and the transformer architecture are related to each other, specifically, through a shared energy representation. We summarize recent efforts to establish these connections and provide examples on how each of these formulations integrating physical modeling and machine learning have been successful in tackling recent problems in biomolecular structure, dynamics, function, evolution, and design. Instances include protein structure prediction; improvement in computational complexity and accuracy of molecular dynamics simulations; better inference of the effects of mutations in proteins leading to improved evolutionary modeling and finally how machine learning is revolutionizing protein engineering and design. Going beyond naturally existing protein sequences, a connection to protein design is discussed where synthetic sequences are able to fold to naturally occurring motifs driven by a model rooted in physical principles. We show that this model is "learnable" and propose its future use in the generation of unique sequences that can fold into a target structure.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Proteínas , Proteínas/química , Proteínas/metabolismo , Engenharia de Proteínas/métodos , Simulação de Dinâmica Molecular
9.
J Fish Biol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859571

RESUMO

Visual signals are involved in many fitness-related tasks and are therefore essential for survival in many species. Aquatic organisms are ideal systems to study visual evolution, as the high diversity of spectral properties in aquatic environments generates great potential for adaptation to different light conditions. Flatfishes are an economically important group, with over 800 described species distributed globally, including halibut, flounder, sole, and turbot. The diversity of flatfish species and wide array of environments they occupy provides an excellent opportunity to understand how this variation translates to molecular adaptation of vision genes. Using models of molecular evolution, we investigated how the light environments inhabited by different flatfish lineages have shaped evolution in the rhodopsin gene, which is responsible for mediating dim-light visual transduction. We found strong evidence for positive selection in rhodopsin, and this was correlated with both migratory behavior and several fundamental aspects of habitat, including depth and freshwater/marine evolutionary transitions. We also identified several mutations that likely affect the wavelength of peak absorbance of rhodopsin, and outline how these shifts in absorbance correlate with the response to the light spectrum present in different habitats. This is the first study of rhodopsin evolution in flatfishes that considers their extensive diversity, and our results highlight how ecologically-driven molecular adaptation has occurred across this group in response to transitions to novel light environments.

10.
Epigenomics ; : 1-22, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884355

RESUMO

Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.


Proteins are essential for life and are used in many medical treatments. Understanding what makes proteins stable can help us use them more effectively. This review looks at how different things like temperature and pH affect protein stability. It also discusses how chemical changes in cells, called epigenetic modifications, can impact protein stability. Understanding these factors can help us develop better treatments and therapies.

11.
Trends Biochem Sci ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880687

RESUMO

The dynamics behavior of a protein is essential for its functionality. Here, Doucet et al. demonstrate how the evolutionary analysis of conformational pathways within a protein family serves to identify common core scaffolds that accommodate branch-specific functional regions controlled by flexibility switches, offering a model for evolutionary-dynamics based protein design.

12.
FEBS J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923815

RESUMO

Antifreeze proteins (AFPs) are found in a variety of marine cold-water fishes where they prevent freezing by binding to nascent ice crystals. Their diversity (types I, II, III and antifreeze glycoproteins), as well as their scattered taxonomic distribution hint at their complex evolutionary history. In particular, type I AFPs appear to have arisen in response to the Late Cenozoic Ice Age that began ~ 34 million years ago via convergence in four different groups of fish that diverged from lineages lacking this AFP. The progenitor of the alanine-rich α-helical type I AFPs of sculpins has now been identified as lunapark, an integral membrane protein of the endoplasmic reticulum. Following gene duplication and loss of all but three of the 15 exons, the final exon, which encoded a glutamate- and glutamine-rich segment, was converted to an alanine-rich sequence by a combination of frameshifting and mutation. Subsequent gene duplications produced numerous isoforms falling into four distinct groups. The origin of the flounder type I AFP is quite different. Here, a small segment from the original antiviral protein gene was amplified and the rest of the coding sequence was lost, while the gene structure was largely retained. The independent origins of type I AFPs with up to 83% sequence identity in flounder and sculpin demonstrate strong convergent selection at the level of protein sequence for alanine-rich single alpha helices that bind to ice. Recent acquisition of these AFPs has allowed sculpins to occupy icy seawater niches with reduced competition and predation from other teleost species.

13.
Elife ; 132024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941233

RESUMO

A new study reveals how naturally occurring mutations affect the biophysical properties of nucleocapsid proteins in SARS-CoV-2.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
14.
Biomedicines ; 12(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927403

RESUMO

The enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) is involved in the catabolism of the amino acid tyrosine in organisms such as bacteria, plants, and animals. It catalyzes the conversion of 4-hydroxyphenylpyruvate to a homogenisate in the presence of molecular oxygen and Fe(II) as a cofactor. This enzyme represents a key step in the biosynthesis of important compounds, and its activity deficiency leads to severe, rare autosomal recessive disorders, like tyrosinemia type III and hawkinsinuria, for which no cure is currently available. The 4-HPPD C-terminal tail plays a crucial role in the enzyme catalysis/gating mechanism, ensuring the integrity of the active site for catalysis through fine regulation of the C-terminal tail conformation. However, despite growing interest in the 4-HPPD catalytic mechanism and structure, the gating mechanism remains unclear. Furthermore, the absence of the whole 3D structure makes the bioinformatic approach the only possible study to define the enzyme structure/molecular mechanism. Here, wild-type 4-HPPD and its mutants were deeply dissected by applying a comprehensive bioinformatics/evolution study, and we showed for the first time the entire molecular mechanism and regulation of the enzyme gating process, proposing the full-length 3D structure of human 4-HPPD and two novel key residues involved in the 4-HPPD C-terminal tail conformational change.

15.
Mol Syst Biol ; 20(8): 933-951, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38918600

RESUMO

The variability of proteins at the sequence level creates an enormous potential for proteome complexity. Exploring the depths and limits of this complexity is an ongoing goal in biology. Here, we systematically survey human and plant high-throughput bottom-up native proteomics data for protein truncation variants, where substantial regions of the full-length protein are missing from an observed protein product. In humans, Arabidopsis, and the green alga Chlamydomonas, approximately one percent of observed proteins show a short form, which we can assign by comparison to RNA isoforms as either likely deriving from transcript-directed processes or limited proteolysis. While some detected protein fragments align with known splice forms and protein cleavage events, multiple examples are previously undescribed, such as our observation of fibrocystin proteolysis and nuclear translocation in a green alga. We find that truncations occur almost entirely between structured protein domains, even when short forms are derived from transcript variants. Intriguingly, multiple endogenous protein truncations of phase-separating translational proteins resemble cleaved proteoforms produced by enteroviruses during infection. Some truncated proteins are also observed in both humans and plants, suggesting that they date to the last eukaryotic common ancestor. Finally, we describe novel proteoform-specific protein complexes, where the loss of a domain may accompany complex formation.


Assuntos
Arabidopsis , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Humanos , Proteômica/métodos , Chlamydomonas/metabolismo , Chlamydomonas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Proteólise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Processamento Alternativo
16.
Elife ; 132024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941236

RESUMO

Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.


Like other types of RNA viruses, the genetic material of SARS-CoV-2 (the agent responsible for COVID-19) is formed of an RNA molecule which is prone to accumulating mutations. This gives SARS-CoV-2 the ability to evolve quickly, and often to remain one step ahead of treatments. Understanding how these mutations shape the behavior of RNA viruses is therefore crucial to keep diseases such as COVID-19 under control. The gene that codes for the protein that 'packages' the genetic information inside SARS-CoV-2 is particularly prone to mutations. This nucleocapsid (N) protein participates in many key processes during the life cycle of the virus, including potentially interfering with the immune response. Exactly how the physical properties of the N-Protein are impacted by the mutations in its genetic sequence remains unclear. To investigate this question, Nguyen et al. predicted the various biophysical properties of different regions of the N-protein based on a computer-based analysis of SARS-CoV-2 genetic databases. This allowed them to determine if specific protein regions were positively or negatively charged in different mutants. The analyses showed that some domains exhibited great variability in their charge between protein variants ­ reflecting the fact that the corresponding genetic sequences showed high levels of plasticity. Other regions remained conserved, however, including across related coronaviruses. Nguyen et al. also conducted biochemical experiments on a range of N-proteins obtained from clinically relevant SARS-CoV-2 variants. Their results highlighted the importance of protein segments with no fixed three-dimensional structure. Mutations in the related sequences created high levels of variation in the physical properties of these 'intrinsically disordered' regions, which had wide-ranging consequences. Some of these genetic changes even gave individual N-proteins the ability to interact with each other in a completely new way. These results shed new light on the relationship between genetic mutations and the variable physical properties of RNA virus proteins. Nguyen et al. hope that this knowledge will eventually help to develop more effective treatments for viral infections.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Mutação , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/química , Termodinâmica , Estabilidade Proteica
17.
Genome Biol Evol ; 16(7)2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38879874

RESUMO

For protein coding genes to emerge de novo from a non-genic DNA, the DNA sequence must gain an open reading frame (ORF) and the ability to be transcribed. The newborn de novo gene can further evolve to accumulate changes in its sequence. Consequently, it can also elongate or shrink with time. Existing literature shows that older de novo genes have longer ORF, but it is not clear if they elongated with time or remained of the same length since their inception. To address this question we developed a mathematical model of ORF elongation as a Markov-jump process, and show that ORFs tend to keep their length in short evolutionary timescales. We also show that if change occurs it is likely to be a truncation. Our genomics and transcriptomics data analyses of seven Drosophila melanogaster populations are also in agreement with the model's prediction. We conclude that selection could facilitate ORF length extension that may explain why longer ORFs were observed in old de novo genes in studies analysing longer evolutionary time scales. Alternatively, shorter ORFs may be purged because they may be less likely to yield functional proteins.


Assuntos
Drosophila melanogaster , Evolução Molecular , Modelos Genéticos , Fases de Leitura Aberta , Animais , Drosophila melanogaster/genética , Cadeias de Markov
18.
J Mol Biol ; 436(16): 168641, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844045

RESUMO

Protein-protein interactions (PPIs) are known to rewire extensively during evolution leading to lineage-specific and species-specific changes in molecular processes. However, the detailed molecular evolutionary mechanisms underlying interactome network rewiring are not well-understood. Here, we combine high-confidence PPI data, high-resolution three-dimensional structures of protein complexes, and homology-based structural annotation transfer to construct structurally-resolved interactome networks for the two yeasts S. cerevisiae and S. pombe. We then classify PPIs according to whether they are preserved or different between the two yeast species and compare site-specific evolutionary rates of interfacial versus non-interfacial residues for these different categories of PPIs. We find that residues in PPI interfaces evolve significantly more slowly than non-interfacial residues when using lineage-specific measures of evolutionary rate, but not when using non-lineage-specific measures. Furthermore, both lineage-specific and non-lineage-specific evolutionary rate measures can distinguish interfacial residues from non-interfacial residues for preserved PPIs between the two yeasts, but only the lineage-specific measure is appropriate for rewired PPIs. Finally, both lineage-specific and non-lineage-specific evolutionary rate measures are appropriate for elucidating structural determinants of protein evolution for residues outside of PPI interfaces. Overall, our results demonstrate that unlike tertiary structures of single proteins, PPIs and PPI interfaces can be highly volatile in their evolution, thus requiring the use of lineage-specific measures when studying their evolution. These results yield insight into the evolutionary design principles of PPIs and the mechanisms by which interactions are preserved or rewired between species, improving our understanding of the molecular evolution of PPIs and PPI interfaces at the residue level.


Assuntos
Evolução Molecular , Mapas de Interação de Proteínas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/química , Modelos Moleculares , Mapeamento de Interação de Proteínas , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Yeast ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895906

RESUMO

The evolution of protein sequence is driven not only by factors directly related to protein function and shape but also by nonfunctional factors. Such factors in protein evolution might be categorized as those connected to energetic costs, synthesis efficiency, and avoidance of misfolding and toxicity. A common approach to studying them is correlational analysis contrasting them with some characteristics of the protein, like amino acid composition, but these features are interdependent. To avoid possible bias, empirical studies are needed, and not enough work has been done to date. In this review, we describe the role of nonfunctional factors in protein evolution and present an experimental approach using yeast as a suitable model organism. The focus of the proposed approach is on the potential negative impact on the fitness of mutations that change protein properties not related to function and the frequency of mutations that change these properties. Experimental results of testing the misfolding avoidance hypothesis as an explanation for why highly expressed proteins evolve slowly are inconsistent with correlational research results. Therefore, more efforts should be made to empirically test the effects of nonfunctional factors in protein evolution and to contrast these results with the results of the correlational analysis approach.

20.
Biomolecules ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786000

RESUMO

Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and ßγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the ßγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens ßγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in ßB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even ß-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.


Assuntos
Cisteína , Cristalino , gama-Cristalinas , gama-Cristalinas/metabolismo , gama-Cristalinas/química , gama-Cristalinas/genética , Cisteína/metabolismo , Cisteína/química , Humanos , Cristalino/metabolismo , Cristalino/química , Animais , Catarata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...