Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Mol Neurobiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976130

RESUMO

Protein phosphatase 2A (PP2A) is an abundant heterotrimeric holoenzyme in eukaryotic cells coordinating with specific kinases to regulate spatial-temporal protein dephosphorylation in various biological processes. However, the function of PP2A in cortical neurogenesis remains largely unknown. Here, we report that neuronal-specific deletion of Pp2acα in mice displayed microcephaly, with significantly smaller brains and defective learning and memory ability. Mechanistically, neuronal Pp2acα deficiency resulted in elevated endogenous DNA damage and activation of ATR/CHK1 signaling. It was further induced by the loss of direct interaction between PP2AC and ATR as well as the function of PP2AC to dephosphorylate ATR. Importantly, ATR/CHK1 signaling dysregulation altered both the expression and activity of several critical downstream factors including P53, P21, Bcl2, and Bax, which led to decreased proliferation of cortical progenitor cells and increased apoptosis in developing cortical neurons. Taken together, our results indicate an essential function of PP2ACα in endogenous DNA damage response-mediated ATR signaling during neurogenesis, and defective PP2ACα in neurons contributes to microcephaly.

2.
Cell Oncol (Dordr) ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888850

RESUMO

PURPOSE: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs. Here, we investigated the effect of the p.R183W PPP2R1A hotspot variant on treatment response to the nucleoside analogue clofarabine. METHODS AND RESULTS: USC cells stably expressing p.R183W Aα showed increased resistance to clofarabine treatment in vitro and, corroborated by decreased clofarabine-induced apoptosis, G1 phase arrest, DNA-damage (γH2AX) and activation of ATM and Chk1/2 kinases. Phenotypic rescue by pharmacologic PP2A inhibition or dicer-substrate siRNA (dsiRNA)-mediated B56δ subunit knockdown supported a gain-of-function mechanism of Aα p.R183W, promoting dephosphorylation and inactivation of deoxycytidine kinase (dCK), the cellular enzyme responsible for the conversion of clofarabine into its bioactive form. Therapeutic assessment of related nucleoside analogues (gemcitabine, cladribine) revealed similar effects, but in a cell line-dependent manner. Expression of two other PPP2R1A USC mutants (p.P179R or p.S256F) did not affect clofarabine response in our cell models, arguing for mutant-specific effects on treatment outcome as well. CONCLUSIONS: While our results call for PPP2R1A mutant and context-dependent effects upon clofarabine/nucleoside analogue monotherapy, combining clofarabine with a pharmacologic PP2A inhibitor proved synergistically in all tested conditions, highlighting a new generally applicable strategy to improve treatment outcome in USC.

3.
Brain Res ; 1841: 149095, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917878

RESUMO

BACKGROUND: Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES: This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS: In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of ß-amyloid (Aß), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aß and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS: FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aß42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS: The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.

4.
Front Cardiovasc Med ; 11: 1419597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863902

RESUMO

Background: Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods: The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results: ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion: These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.

5.
J Biol Chem ; 300(7): 107408, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796066

RESUMO

The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.

6.
Cerebellum ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735882

RESUMO

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

7.
Clin Sci (Lond) ; 138(10): 573-597, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718356

RESUMO

The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.


Assuntos
Angiotensina II , Cardiomegalia , Camundongos Knockout , Miócitos Cardíacos , Animais , Angiotensina II/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Masculino , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Remodelação Ventricular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Calmodulina , Proteínas do Tecido Nervoso
8.
Brain Res ; 1838: 148966, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688382

RESUMO

Thymus vulgaris and Allium cepa are plants with great medicinal importance. Thymol monoterpene and quercetin, which are present in these plants, have anti-Alzheimer's and antioxidant effects. The objectives of this research were investigating the effects of these compounds on the pathogenesis and progress of Alzheimer's disease in cells modeled by formaldehyde. MTT, flow cytometry, and RT-PCR were used to investigate the toxicity, survival rate and apoptosis of the cells, and the expression level of PP2A, GSK3, NMDAR, BACE1, and APP genes, respectively. Also, the total antioxidant capacity of the modeled cells was measured. The results showed that the two compounds as well as the plants extract and essential oil were able to increase the percentage of cell survival; among them, Thymus vulgaris essential oil had the greatest effect (93.55316 % in 48 h exposure). In addition, quercetin was able to reduce the rate of apoptosis in Alzheimer's cells (4.73 %) which was greater than the effects of other compounds. In general, the essential oil of Thymus vulgaris compared to thymol; and quercetin compared to Allium cepa extract showed more improving effects on the expression of genes involved in the disease. All four compounds increased the antioxidant capacity of the modeled cells compared to the control group, and these effects were almost equal between the compounds. According to the obtained results, both plants, especially Thymus vulgaris can be proposed as candidates to be included in the diet of Alzheimer's patients. In addition, polyphenols thymol and quercetin as derivates from the studied plants can be used in new drugs development for Alzheimer's disease, with greater safety than currently used drugs. These results are significant because most of the drug for Alzheimer's treatments such as cholinesterases (e.g. rivastigmine and donepezil) and memantine are chemically based and have many side effects.


Assuntos
Doença de Alzheimer , Antioxidantes , Óleos Voláteis , Cebolas , Extratos Vegetais , Quercetina , Timol , Thymus (Planta) , Quercetina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Extratos Vegetais/farmacologia , Óleos Voláteis/farmacologia , Ratos , Animais , Timol/farmacologia , Antioxidantes/farmacologia , Células PC12 , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
9.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659734

RESUMO

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

10.
Biomed Pharmacother ; 173: 116398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458011

RESUMO

Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
11.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472637

RESUMO

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Assuntos
Nefropatias , Humanos , Nefropatias/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Fibrose
12.
Exp Cell Res ; 437(1): 113998, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513962

RESUMO

Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.


Assuntos
Óxido Nítrico Sintase Tipo III , Fosfoproteínas Fosfatases , Doenças Vasculares , Humanos , Fosforilação , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Palmítico/farmacologia , Serina/metabolismo , Espécies Reativas de Oxigênio , Células Cultivadas , Proteína Fosfatase 2/metabolismo , Óxido Nítrico/metabolismo
13.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555001

RESUMO

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Assuntos
Neoplasias , Proteínas Tirosina Fosfatases , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/genética , Animais , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
14.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529552

RESUMO

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Assuntos
Asma , Broncoconstrição , Regulação para Baixo , Miócitos de Músculo Liso , Proteína Fosfatase 2 , Asma/metabolismo , Asma/patologia , Humanos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Animais , Camundongos , Regulação para Baixo/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Broncoconstrição/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/efeitos dos fármacos , Masculino , Brônquios/patologia , Brônquios/metabolismo , Brônquios/efeitos dos fármacos , Cálcio/metabolismo , Feminino , Camundongos Endogâmicos C57BL
15.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339122

RESUMO

Alterations in angiogenic properties play a pivotal role in the manifestation and onset of various pathologies, including vascular diseases and cancer. Thrombospondin-1 (TSP1) protein is one of the master regulators of angiogenesis. This study unveils a novel aspect of TSP1 regulation through reversible phosphorylation. The silencing of the B55α regulatory subunit of protein phosphatase 2A (PP2A) in endothelial cells led to a significant decrease in TSP1 expression. Direct interaction between TSP1 and PP2A-B55α was confirmed via various methods. Truncated TSP1 constructs were employed to identify the phosphorylation site and the responsible kinase, ultimately pinpointing PKC as the enzyme phosphorylating TSP1 on Ser93. The biological effects of B55α-TSP1 interaction were also analyzed. B55α silencing not only counteracted the increase in TSP1 expression during wound closure but also prolonged wound closure time. Although B55α silenced cells initiated tube-like structures earlier than control cells, their spheroid formation was disrupted, leading to disintegration. Cells transfected with phosphomimic TSP1 S93D exhibited smaller spheroids and reduced effectiveness in tube formation, revealing insights into the effects of TSP1 phosphorylation on angiogenic properties. In this paper, we introduce a new regulatory mechanism of angiogenesis by reversible phosphorylation on TSP1 S93 by PKC and PP2A B55α.


Assuntos
Células Endoteliais , Proteína Fosfatase 2 , Angiogênese , Células Endoteliais/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Trombospondina 1/genética , Trombospondina 1/metabolismo , Humanos
16.
Brain Res ; 1829: 148793, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309553

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and cognitive abilities, primarily in the elderly. The burden of AD extends beyond patients, impacting families and caregivers due to the patients' reliance on assistance for daily tasks. The main features of the pathogenesis of AD are beta-amyloid plaques and neurofibrillary tangles (NFTs), that strongly correlate with oxidative stress and inflammation. NFTs result from misfolded and hyperphosphorylated tau proteins. Various studies have focused on tau phosphorylation, indicating protein phosphatase 2A (PP2A) as the primary tau phosphatase and glycogen synthase kinase-3 beta (GSK-3ß) as the leading tau kinase. Experimental evidence suggests that inhibition of PP2A and increased GSK-3ß activity contribute to neuroinflammation, oxidative stress, and cognitive impairment. Hence, targeting PP2A and GSK-3ß with pharmacological approaches shows promise in treating AD. The use of natural compounds in the drug development for AD have been extensively studied for their antioxidant, anti-inflammatory, anti-cholinesterase, and neuroprotective properties, demonstrating therapeutic advantages in neurological diseases. Alongside the development of PP2A activator and GSK-3ß inhibitor drugs, natural compounds are likely to have neuroprotective effects by increasing PP2A activity and decreasing GSK-3ß levels. Therefore, based on the preclinical and clinical studies, the potential of PP2A and GSK-3ß as therapeutic targets of natural compounds are highlighted in this review.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Proteína Fosfatase 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosforilação/fisiologia
17.
Environ Pollut ; 346: 123535, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365080

RESUMO

With the development of world industrialization, the environmental pollution of hexavalent chromium [Cr(VI)] is becoming an increasingly serious problem. In particular, the mechanisms by which long-term and low-dose exposure to Cr(VI) leading the development of related cancers are not well understood. As senescent cells gradually lose their ability to proliferate and divide, they will not be malignantly transformed. However, Senescence-associated secretory phenotype (SASP) released by senescent cells into the cellular microenvironment can act on neighboring cells. Since SASP has a bidirectional regulatory role in the malignant transformation of cells. Hence, It is very necessary to identified the composition and function of SASP which secreted by Cr(VI) induced senescent L02 hepatocytes (S-L02). Exosomes, a vesicle-like substances released extracellularly after the fusion of intracellular multivesicular bodies with cell membrane, are important components of SASP and contain a large number of microRNAs (miRNAs). By establishing Cr(VI)-induced S-L02 model, we collected the exosomes from the supernatants of S-L02 and L02 culture medium respectively, and screened out the highly expressed miRNAs in the exosomes of S-L02, namely the new SASP components. Among them, the increase of miR-222-5p was the most significant. It was validated that as SASP, miR-222-5p can inhibit the proliferation of L02 and S-L02 hepatocytes and at the same time accelerate the proliferation and migration ability of HCC cells. Further mechanistic studies revealed that miR-222-5p attenuated the regulatory effect of protein phosphatase 2A subunit B isoform R2-α (PPP2R2A) on Akt via repressing its target gene PPP2R2A, causing reduced expressions of forkhead box O3 (FOXO3a), p27 and p21, and finally increasing the proliferation of HCC cells after diminishing the negative regulation of on cell cycle. This study certainly provides valuable laboratory evidence as well as potential therapeutic targets for the prevention and further personalized treatment of Cr(VI)-associated cancers.


Assuntos
Carcinoma Hepatocelular , Cromo , Exossomos , Neoplasias Hepáticas , MicroRNAs , Humanos , Exossomos/metabolismo , Hepatócitos , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral
18.
Front Mol Neurosci ; 17: 1347228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384279

RESUMO

Repeated exposure to psychostimulants such as methamphetamine (METH) induces neuronal adaptations in the mesocorticolimbic dopamine system, including the ventral tegmental area (VTA). These changes lead to persistently enhanced neuronal activity causing increased dopamine release and addictive phenotypes. A factor contributing to increased dopaminergic activity in this system appears to be reduced GABAB receptor-mediated neuronal inhibition in the VTA. Dephosphorylation of serine 783 (Ser783) of the GABAB2 subunit by protein phosphatase 2A (PP2A) appears to trigger the downregulation GABAB receptors in psychostimulant-addicted rodents. Therefore, preventing the interaction of GABAB receptors with PP2A using an interfering peptide is a promising strategy to restore GABAB receptor-mediated neuronal inhibition. We have previously developed an interfering peptide (PP2A-Pep) that inhibits the GABAB receptors/PP2A interaction and thereby restores receptor expression under pathological conditions. Here, we tested the hypothesis that restoration of GABAB receptor expression in the VTA of METH addicted mice reduce addictive phenotypes. We found that the expression of GABAB receptors was significantly reduced in the VTA and nucleus accumbens but not in the hippocampus and somatosensory cortex of METH-addicted mice. Infusion of PP2A-Pep into the VTA of METH-addicted mice restored GABAB receptor expression in the VTA and inhibited METH-induced locomotor sensitization as assessed in the open field test. Moreover, administration of PP2A-Pep into the VTA also reduced drug seeking behavior in the conditioned place preference test. These observations underscore the importance of VTA GABAB receptors in controlling addictive phenotypes. Furthermore, this study illustrates the value of interfering peptides targeting diseases-related protein-protein interactions as an alternative approach for a potential development of selective therapeutic interventions.

19.
J Neurotrauma ; 41(1-2): 222-243, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950806

RESUMO

Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.


Assuntos
Lesões Encefálicas Traumáticas , Selênio , Ratos , Masculino , Animais , Ácido Selênico/farmacologia , Fosforilação , Proteínas tau/metabolismo , Córtex Cerebral/metabolismo
20.
Int J Biol Macromol ; 256(Pt 1): 128333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007022

RESUMO

Viruses have developed superior strategies to escape host defenses or exploit host components and enable their infection. The forkhead box transcription factor O family proteins (FOXOs) are reportedly utilized by human cytomegalovirus during their reactivation in mammals, but if FOXOs are exploited by viruses during their infection remains unclear. In the present study, we found that the FOXO of kuruma shrimp (Marsupenaeus japonicus) was hijacked by white spot syndrome virus (WSSV) during infection. Mechanistically, the expression of leucine carboxyl methyl transferase 1 (LCMT1) was up-regulated during the early stages of WSSV infection, which activated the protein phosphatase 2A (PP2A) by methylation, leading to dephosphorylation of FOXO and translocation into the nucleus. The FOXO directly promoted transcription of the immediate early gene, wsv079 of WSSV, which functioned as a transcriptional activator to initiate the expression of viral early and late genes. Thus, WSSV utilized the host LCMT1-PP2A-FOXO axis to promote its replication during the early infection stage. We also found that, during the late stages of WSSV infection, the envelope protein of WSSV (VP26) promoted PP2A activity by directly binding to FOXO and the regulatory subunit of PP2A (B55), which further facilitated FOXO dephosphorylation and WSSV replication via the VP26-PP2A-FOXO axis in shrimp. Overall, this study reveals novel viral strategies by which WSSV hijacks host LCMT1-PP2A-FOXO or VP26-PP2A-FOXO axes to promote its propagation, and provides clinical targets for WSSV control in shrimp aquaculture.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Humanos , Vírus da Síndrome da Mancha Branca 1/genética , Proteína Fosfatase 2 , Fatores de Transcrição , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...