RESUMO
AIM: To investigate the conformational changes in human serum albumin (HSA) caused by chemical (CD) and thermal denaturation (TD) at pH 7.4 and 9.9, crucial for designing controlled drug delivery systems with paclitaxel (PTX). METHODS: Experimental and computational methods, including differential scanning calorimetry (DSC), UV-Vis and intrinsic fluorescence spectroscopy, mean diameter, polydispersity index (PDI), ζ-potential, encapsulation efficiency (EE), in vitro release and protein docking studies were conducted to study the HSA denaturation and nanoparticles (NPs) preparation. RESULTS: TD at pH 7.4 produced smaller NPs (287.1 ± 12.9 nm) than CD at pH 7.4 with NPs (584.2 ± 47.7 nm). TD at pH 9.9 exhibited high EE (97.3 ± 0.2%w/w) with rapid PTX release (50% within 1h), whereas at pH 7.4 (96.4 ± 2.1%w/w), release only 40%. ζ-potentials were around -30 mV. CONCLUSION: Buffer type and pH significantly influence NP properties. TD in PBS at pH 7.4, provided optimal conditions for a stable and efficient drug delivery system.
Assuntos
Nanopartículas , Paclitaxel , Albumina Sérica Humana , Paclitaxel/química , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Humanos , Nanopartículas/química , Albumina Sérica Humana/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Fosfatos/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Liberação Controlada de FármacosRESUMO
Aromatic rings are important residues for biological interactions and appear to a large extent as part of protein-drug and protein-protein interactions. They are relevant for both protein stability and molecular recognition processes due to their natural occurrence in aromatic aminoacids (Trp, Phe, Tyr and His) as well as in designed drugs since they are believed to contribute to optimizing both affinity and specificity of drug-like molecules. Despite the mentioned relevance, the impact of aromatic clusters on protein-protein and protein-drug complexes is still poorly characterized, especially in those that go beyond a dimer. In this work, we studied protein-drug and protein-protein complexes and systematically analyzed the presence and structure of their aromatic clusters. Our results show that aromatic clusters are highly prevalent in both protein-protein and protein-drug complexes, and suggest that protein-protein aromatic clusters have idealized interactions, probably because they were optimized by evolution, as compared to protein-drug clusters that were manually designed. Interestingly, the configuration, solvent accessibility and secondary structure of aromatic residues in protein-drug complexes shed light on the relation between these properties and compound affinity, allowing researchers to better design new molecules.
RESUMO
Inhibition of cyclin dependent kinases (CDKs) 4 and 6 prevent cells from entering the synthesis phase of the cell cycle. CDK4 and 6 are therefore important drug targets in various cancers. The selective CDK4/6 inhibitor palbociclib is approved for the treatment of breast cancer and has shown activity in a cellular model of mixed lineage leukaemia (MLL)-rearranged acute myeloid leukaemia (AML). We studied the interactions of palbociclib and CDK6 using molecular dynamics simulations. Analysis of the simulations suggested several interactions that stabilized the drug in its binding site and that were not observed in the crystal structure of the protein-drug complex. These included a hydrogen bond to His 100 that was hitherto not reported and several hydrophobic contacts. Evolutionary-based bioinformatic analysis was used to suggest two mutants, D163G and H100L that would potentially yield drug resistance, as they lead to loss of important protein-drug interactions without hindering the viability of the protein. One of the mutants involved a change in the glycine of the well-conserved DFG motif of the kinase. Interestingly, CDK6-dependent human AML cells stably expressing either mutant retained sensitivity to palbociclib, indicating that the protein-drug interactions are not affected by these. Furthermore, the cells were proliferative in the absence of palbociclib, indicating that the Asp to Gly mutation in the DFG motif did not interfere with the catalytic activity of the protein.