Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400753, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818648

RESUMO

VEGFR-2 is a prominent therapeutic target in antitumor drug research to block tumor angiogenesis. This study focused on the synthesis and optimization of PROTACs based on the natural product rhein, resulting in the successful synthesis of 15 distinct molecules. In A549 cells, D9 exhibited remarkable antitumor efficacy with an IC50 of 5.88 ± 0.50 µM, which was 15-fold higher compared to rhein (IC50=88.45 ± 2.77 µM). An in-depth study of the effect of D9 on the degradation of VEGFR-2 revealed that D9 was able to induce the degradation of VEGFR-2 in A549 cells in a time-dependent manner. The observed effect was reversible, contingent upon the proteasome and ubiquitination system, and demonstrably linked to CRBN. Further experiments revealed that D9 induced apoptosis in A549 cells and led to cell cycle arrest in the G1 phase. Molecular docking simulations validated the binding mode of D9 to VEGFR, establishing the potential of D9 to bind to VEGFR-2 in its natural state. In summary, this study confirms the feasibility of natural product-bound PROTAC technology for the development of a new generation of VEGFR-2 degraders, offering a novel trajectory for the future development of pharmacological agents targeting VEGFR-2.

2.
Bioorg Med Chem ; 96: 117537, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992440

RESUMO

Proteolysis Targeting Chimeras (PROTAC) technology has emerged as a promising approach for targeted protein degradation. In this study, we focused on tyrosinase (TYR), a key enzyme involved in melanin synthesis and pigmentation. For this target, we designed and synthesized a series of PROTACs (D3-D9), employing Rhein as the target protein-ligand. Through some experimental tests, we made a significant discovery. Preliminary experimental results show that the most promising compound (D6) demonstrated the ability to degrade MITF and inhibit the expression and TYR in B16-F10 cells, effectively suppressing melanogenesis in zebrafish. Notably, at equivalent concentrations, the whitening effect of D6 surpassed that of its precursor Rhein and was even comparable to that of the well-established whitening agent, ß-arbutin. Validating experiments further revealed that the action of D6 was reliant on the E3 ligand, indicating its capacity to degrade TYR and MITF through the ubiquitination pathway. Whether D6 acts directly on TYR or MITF needs to be further explored. These compelling results underscore the tremendous whitening potential of D6, suggesting its suitability as a valuable lead for whitening agents and its potential to expand the range of whitening cosmetic products.


Assuntos
Melaninas , Melanoma Experimental , Animais , Quimera de Direcionamento de Proteólise , Peixe-Zebra , Ligantes , Monofenol Mono-Oxigenase , Proteólise
3.
Semin Cancer Biol ; 86(Pt 2): 269-279, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798235

RESUMO

Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.


Assuntos
Descoberta de Drogas , Neoplasias , Humanos , Descoberta de Drogas/métodos , Proteólise , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ubiquitina-Proteína Ligases/metabolismo , Microambiente Tumoral
4.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 3915-3932, 2021 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-34841795

RESUMO

Targeted protein degradation (TPD) technology facilitates specific and efficient degradation of disease-related proteins through hijacking the two major protein degradation systems in mammalian cells: ubiquitin-proteasome system and lysosome pathway. Compared with traditional small molecule-inhibitors, TPD-based drugs exhibit the characteristics of a broader target spectrum. Compared with techniques interfere with protein expression on the gene and mRNA level, TPD-based drugs are target-specific, efficaciously rapid, and not constrained by post-translational modification of proteins. In the past 20 years, various TPD-based technologies have been developed. Most excitingly, two TPD-based therapeutic drugs have been approved by FDA for phase Ⅰ clinical trials in 2019. Despite of the early stage characteristics and various obstructions of the TPD technology, it could serve as a powerful tool for the development of novel drugs. This review summarizes the advances of different degradation systems based on TPD technologies and their applications in disease therapy. Moreover, the advantages and challenges of various technologies were discussed systematically, with the aim to provide theoretical guidance for further application of TPD technologies in scientific research and drug development.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Proteólise , Tecnologia
5.
Chinese Journal of Biotechnology ; (12): 3915-3932, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921476

RESUMO

Targeted protein degradation (TPD) technology facilitates specific and efficient degradation of disease-related proteins through hijacking the two major protein degradation systems in mammalian cells: ubiquitin-proteasome system and lysosome pathway. Compared with traditional small molecule-inhibitors, TPD-based drugs exhibit the characteristics of a broader target spectrum. Compared with techniques interfere with protein expression on the gene and mRNA level, TPD-based drugs are target-specific, efficaciously rapid, and not constrained by post-translational modification of proteins. In the past 20 years, various TPD-based technologies have been developed. Most excitingly, two TPD-based therapeutic drugs have been approved by FDA for phase Ⅰ clinical trials in 2019. Despite of the early stage characteristics and various obstructions of the TPD technology, it could serve as a powerful tool for the development of novel drugs. This review summarizes the advances of different degradation systems based on TPD technologies and their applications in disease therapy. Moreover, the advantages and challenges of various technologies were discussed systematically, with the aim to provide theoretical guidance for further application of TPD technologies in scientific research and drug development.


Assuntos
Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteólise , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...