Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363611

RESUMO

This paper validates a sinusoidal approach for the proton-exchange membrane fuel cell (PEMFC) model as a supplement to experimental studies. An FC simulation or hardware emulation is necessary for prototype design, testing, and fault diagnosis to reduce the overall cost. For this objective, a sinusoidal model that is capable of accurately estimating the voltage behavior from the operating current value of the DC was developed. The model was tested using experimental data from the Ballard Nexa 1.2 kW fuel cell (FC). This methodology offers a promising approach for static and current-voltage, characteristic of the three regions of operation. A study was carried out to evaluate the effectiveness and superiority of the proposed FC Sinusoidal model compared with the Diffusive Global model and the Evolution Strategy.

2.
Membranes (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363613

RESUMO

An accurate model of a proton-exchange membrane fuel cell (PEMFC) is important for understanding this fuel cell's dynamic process and behavior. Among different large-scale energy storage systems, fuel cell technology does not have geographical requirements. To provide an effective operation estimation of PEMFC, this paper proposes a support vector machine (SVM) based model. The advantages of the SVM, such as the ability to model nonlinear systems and provide accurate estimations when nonlinearities and noise appear in the system, are the main motivations to use the SVM method. This model can capture the static and dynamic voltage-current characteristics of the PEMFC system in the three operating regions. The validity of the proposed SVM model has been verified by comparing the estimated voltage with the real measurements from the Ballard Nexa® 1.2 kW fuel cell (FC) power module. The obtained results have shown high accuracy between the proposed model and the experimental operation of the PEMFC. A statistical study is developed to evaluate the effectiveness and superiority of the proposed SVM model compared with the diffusive global (DG) model and the evolution strategy (ES)-based model.

3.
Membranes (Basel) ; 11(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940454

RESUMO

This paper proposes a Gaussian approach for the proton-exchange membrane fuel cell (PEMFC) model that estimates its voltage behavior from the operating current value. A multi-parametric Gaussian model and an unconstrained optimization formulation based on a conventional non-linear least squares optimizer is mainly considered. The model is tested using experimental data from the Ballard Nexa 1.2 kW fuel cell (FC). This methodology offers a promising approach for static and current-voltage, characteristic of the three regions of operation. A statistical study is developed to evaluate the effectiveness and superiority of the proposed FC Gaussian model compared with the Diffusive Global model and the Evolution Strategy. In addition, an approximation to the exponential function for a Gaussian model simplification can be used in systems that require real-time emulators or complex long-time simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA