Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.905
Filtrar
1.
BMC Biotechnol ; 24(1): 48, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982413

RESUMO

BACKGROUND: Enamelin is an enamel matrix protein that plays an essential role in the formation of enamel, the most mineralized tissue in the human body. Previous studies using animal models and proteins from natural sources point to a key role of enamelin in promoting mineralization events during enamel formation. However, natural sources of enamelin are scarce and with the current study we therefore aimed to establish a simple microbial production method for recombinant human enamelin to support its use as a mineralization agent. RESULTS: In the study the 32 kDa fragment of human enamelin was successfully expressed in Escherichia coli and could be obtained using immobilized metal ion affinity chromatography purification (IMAC), dialysis, and lyophilization. This workflow resulted in a yield of approximately 10 mg enamelin per liter culture. Optimal conditions for IMAC purification were obtained using Ni2+ as the metal ion, and when including 30 mM imidazole during binding and washing steps. Furthermore, in vitro mineralization assays demonstrated that the recombinant enamelin could promote calcium phosphate mineralization at a concentration of 0.5 mg/ml. CONCLUSIONS: These findings address the scarcity of enamelin by facilitating its accessibility for further investigations into the mechanism of enamel formation and open new avenues for developing enamel-inspired mineralized biomaterials.


Assuntos
Proteínas do Esmalte Dentário , Escherichia coli , Proteínas Recombinantes , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cromatografia de Afinidade , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/química
2.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948847

RESUMO

The Escherichia coli XPD/Rad3-like helicase, YoaA, and DNA polymerase III subunit, χ, are involved in E. coli DNA damage tolerance and repair. YoaA and χ promote tolerance to the DNA chain-terminator, 3 -azidothymidine (AZT), and together form the functional helicase complex, YoaA-χ. How YoaA-χ contributes to DNA damage tolerance is not well understood. E. coli single-stranded DNA binding protein (SSB) accumulates at stalled replication forks, and the SSB-χ interaction is required to promote AZT tolerance via an unknown mechanism. YoaA-χ and SSB interactions were investigated in vitro to better understand this DNA damage tolerance mechanism, and we discovered YoaA-χ and SSB have a functional interaction. SSB confers a substrate-specific effect on the helicase activity of YoaA-χ, barely affecting YoaA-χ on an overhang DNA substrate but inhibiting YoaA-χ on forked DNA. A paralog helicase, DinG, unwinds SSB-bound DNA in a similar manner to YoaA-χ on the substrates tested. Through use of ensemble experiments, we believe SSB binds behind YoaA-χ relative to the DNA ds/ss junction and show via single-molecule assays that SSB translocates along ssDNA with YoaA-χ. This is, to our knowledge, the first demonstration of a mechanoenzyme pulling SSB along ssDNA.

3.
J Hazard Mater ; 476: 135108, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972202

RESUMO

Struvite crystallization, a promising technology for nutrient recovery from wastewater, is facing considerable challenges due to the presence of emerging contaminants such as microplastics (MPs) ubiquitously found in wastewater. Here, we investigate the roles of MPs and humic acid (HA) in struvite crystallization in batch and fluidized-bed reactors (FBRs) using synthetic and real wastewater with a Mg:N:P molar ratio of 1:3:(1-1.3) at an initial pH of 11. Batch reactor (BR) experiment results show that MPs expedited the nucleation and growth rates of struvite (e.g., the rate of crystal growth in the presence of 30 mg L-1 of polyethylene terephthalate (PET) was 1.43 times higher than that in the blank system), while HA hindered the formation of struvite. X-ray diffraction and the Rietveld refinement analysis revealed that the presence of MPs and HA can result in significant changes in phase compositions of the reclaimed precipitates, with over 80 % purity of struvite found in the precipitates from suspensions in the presence of 30 mg L-1 of MPs. Further characterizations demonstrated that MPs act as seeds of struvite nucleation, spurring the formation of well-defined struvite, while HA favors the formation of newberyite rather than struvite in both reactors. These findings highlight the need for a more comprehensive understanding of the interactions between emerging contaminants and struvite crystallization processes to optimize nutrient recovery strategies for mitigating their adverse impact on the quality and yield of struvite-based fertilizers. ENVIRONMENTAL IMPLICATION: The presence of microplastics in wastewater poses a significant challenge to struvite crystallization for nutrient recovery, as it accelerates nucleation and growth rates of struvite crystals. This can lead to changes in the phase compositions of the reclaimed precipitates, with implications for the quality and yield of struvite-based fertilizers. Additionally, the presence of humic acid hinders the formation of struvite, favoring the formation of other minerals like newberyite. Understanding the interactions between emerging contaminants and struvite crystallization processes is crucial for optimizing nutrient recovery strategies and mitigating the environmental impact of these contaminants on water quality and struvite-based fertilizers.

4.
J Chromatogr A ; 1730: 465117, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38972252

RESUMO

Bispecific antibodies expressed and assembled from a single upstream culture require the correct balance and pairing of four different heavy and light chains (HC and LC). The increased potential for chain-mispaired species challenges the downstream purification of this new format. While clearance of HC-mispaired species, including homodimers and half-antibodies, has been assessed, removal of LC mispairs requires a more stringent approach. Here, we report two case studies in which separation is achieved, as well as the structural basis of these separations: (A) In the first case, a main species with a positively charged patch in the correctly formed variable fragment (Fv) is disrupted when paired with the wrong LC. This LC-mispaired variant binds more weakly to a cation exchange resin and can be washed off in a chromatography step. (B) A second molecule whose LC mispair introduces a negative-charge patch and hydrophobic patch in close proximity, presenting increased binding to a multimodal anion exchange resin. This LC-mispaired variant can be retained on the column under conditions in which the bispecific is recovered. In both case studies, the molecular structural analysis by protein surface properties models correlated well with the chromatography experiments. The comprehensive interpretation of experimental and computational results has provided a better understanding of strategies and potential applications for predicting the downstream purification of complex molecules.

5.
Chem Eng Sci ; 2852024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38975615

RESUMO

In this work dynamic models of the continuous crystallization, filtration, deliquoring, washing, and drying steps are introduced, which are developed in the open-source pharmaceutical modeling tool PharmaPy. These models enable the simulation and digital design of an integrated continuous two-stage crystallization and filtration-drying carousel system. The carousel offers an intensified process that can manufacture products with tailored properties through optimal design and control. Results show that improved crystallization design enhances overall process efficiency by improving critical material attributes of the crystal slurry for downstream filtration and drying operations. The digital design of the integrated process achieves enhanced productivity while satisfying multiple design and product quality constraints. Additionally, the impact of model uncertainty on the optimal operating conditions is investigated. The findings demonstrate the systematic process development potential of PharmaPy, providing improved process understanding, design space identification, and optimized robust operation.

6.
Ren Fail ; 46(2): 2374013, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38967153

RESUMO

OBJECTIVE: To evaluate the clinical efficacy and safety of fractionated plasma separation and adsorption combined with continuous veno-venous hemofiltration (FPSA-CVVH) treatment in patients with acute bipyridine herbicide poisoning. METHODS: A retrospective analysis of 18 patients with acute bipyridine herbicide poisoning was conducted, of which 9 patients were poisoned by diquat and 9 patients by paraquat. All patients underwent FPSA-CVVH treatment. The serum cytokine levels in pesticide-poisoned patients were assessed. The efficacy of FPSA-CVVH in eliminating cytokines, the 90-d survival rate of poisoned patients, and adverse reactions to the treatment were observed. RESULTS: Fourteen patients (77.8%) had acute kidney injuries and 10 (55.6%) had acute liver injuries. The serum cytokine levels of high mobility group protein B-1 (HMGB-1), interleukin-6 (IL-6), IL-8, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1ß (MIP-1ß) were significantly elevated. A total of 41 FPSA-CVVH treatment sessions were administered. After a single 8-h FPSA-CVVH treatment, the decreases in HMGB-1, IL-6, IL-8, IP-10, MCP-1, and MIP-1ß were 66.0%, 63.5%, 73.3%, 63.7%, 53.9%, and 54.1%, respectively. During FPSA-CVVH treatment, one patient required a filter change due to coagulation in the plasma component separator, and one experienced a bleeding adverse reaction. The 90-d patient survival rate was 50%, with 4 patients with diquat poisoning and 5 patients with paraquat poisoning, and both liver and kidney functions were restored to normal. CONCLUSION: Cytokine storms may play a significant role in the progression of multiorgan dysfunction in patients with acute bipyridine herbicide poisoning. FPSA-CVVH can effectively reduce cytokine levels, increase the survival rate of patients with acute bipyridine herbicide poisoning, and decrease the incidence of adverse events.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Herbicidas , Humanos , Masculino , Feminino , Herbicidas/intoxicação , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Injúria Renal Aguda/terapia , Injúria Renal Aguda/induzido quimicamente , Citocinas/sangue , Paraquat/intoxicação , Diquat/intoxicação , Adulto Jovem , Idoso , Hemofiltração/métodos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/terapia
7.
Braz J Microbiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954220

RESUMO

Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.

8.
Mol Ther Nucleic Acids ; 35(2): 102223, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38948330

RESUMO

The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.

9.
STAR Protoc ; 5(3): 103046, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959108

RESUMO

Here, we present a protocol for the in vitro phosphorylation of Src kinase domain (SrcKD), preparation of phospho-SrcKD in complex with the D1 domain of rPTP epsilon (rPTPεD1), and binding assays using biolayer interferometry (BLI). We describe steps for the in vitro phosphorylation of SrcKD and preparation of the phospho-SrcKD: rPTPεD1 complex for small-angle X-ray scattering (SAXS) experiments. We then detail instructions for the BLI binding assay to determine the binding affinity between phospho-SrcKD and rPTPεD1. For complete details on the use and execution of this protocol, please refer to EswarKumar et al.1.

10.
Methods Mol Biol ; 2829: 227-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951338

RESUMO

Virus-like particles (VLPs) of the adeno-associated virus (AAV) can be produced using the baculovirus expression vector system. Insertion of small peptides on the surface of the AAV or AAV VLPs has been used to redirect the AAV to different target tissues and for vaccine development. Usually, the VLPs self-assemble intracellularly, and an extraction step must be performed before purification. Here, we describe the method we have used to extract AAV VLPs from insect cells successfully with peptide insertions on their surface.


Assuntos
Dependovirus , Peptídeos , Dependovirus/genética , Animais , Peptídeos/química , Peptídeos/genética , Vetores Genéticos/genética , Vírion/genética , Baculoviridae/genética , Células Sf9 , Humanos , Linhagem Celular , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação
11.
Methods Mol Biol ; 2829: 247-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951340

RESUMO

The Baculovirus Expression Vector System (BEVS) is used with cultured insect cells to produce a wide variety of heterologous proteins, which can be secreted into the culture medium during the transient infection process (Smith et al. Mol Cell Biol 12:2156-2165, 1983). When the infection process is complete, centrifugation is often used to separate the desired protein from the spent insect cells. The desired product in the harvested supernatant is contaminated with baculovirus, amino acids, lipids, detergents, oils, lysed cells from the infection process, genomic DNA from the insect cells, and proteases due to the lytic nature of the baculovirus infection process and many other contaminants (Ikonomou et al. Appl Microbiol Biotechnol 62:1-20, 2003). All these contaminants that are present in the centrifuged supernatant with the desired secreted protein make the initial chromatographic capture step critical for effective purification of the desired protein. A purification scheme will be outlined for a slightly acidic secreted protein using cation exchange chromatography (Lundanes et al. Chromatography: basic principles, sample preparations and related methods, 1st edn. Wiley, 2013).


Assuntos
Baculoviridae , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatografia por Troca Iônica/métodos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Insetos/citologia , Células Sf9 , Vetores Genéticos/genética , Linhagem Celular , Spodoptera
12.
Methods Mol Biol ; 2829: 217-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951337

RESUMO

Purification of rAAV is a crucial unit operation of the AAV production process. It enables the capture of AAV and removal of contaminants such as host cell proteins, host cell DNA, and other cell culture-related impurities. Here we describe the purification of rAAV produced in insect cells Sf9/rBEV by immuno-affinity capture chromatography. The method is fully scale-amenable unlike other traditional purification methods based on ultracentrifugation. The method reported herein has two main steps: (1) the clarification of cell lysate by depth filtration and (2) the selective capture and single-step purification of AAV via immune-affinity chromatography. This purification method has been successfully implemented to purify the majority of wild-type AAV serotypes.


Assuntos
Cromatografia de Afinidade , Dependovirus , Dependovirus/genética , Dependovirus/isolamento & purificação , Animais , Cromatografia de Afinidade/métodos , Células Sf9 , Vetores Genéticos/genética , Humanos , Spodoptera/virologia
13.
Methods Mol Biol ; 2829: 237-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951339

RESUMO

Virus-like particles (VLP) of the cowpea chlorotic mottle virus (CCMV), a plant virus, have been shown to be safe and noncytotoxic vehicles for delivering various cargos, including nucleic acids and peptides, and as scaffolds for presenting epitopes. Thus, CCMV-VLP have acquired increasing attention to be used in fields such as gene therapy, drug delivery, and vaccine development. Regardless of their production method, most reports purify CCMV-VLP through a series of ultracentrifugation steps using sucrose density gradient ultracentrifugation, which is a complex and time-consuming process. Here, the use of anion exchange chromatography is described as a one-step protocol for purification of CCMV-VLP produced by the insect cell-baculovirus expression vector system (IC-BEVS).


Assuntos
Bromovirus , Bromovirus/genética , Animais , Baculoviridae/genética , Vetores Genéticos/genética , Cromatografia por Troca Iônica/métodos , Vírion/isolamento & purificação , Vírion/genética , Vírion/metabolismo
14.
Int J Biol Macromol ; : 133629, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964682

RESUMO

In this study, we investigated the use of deep eutectic solvents (DESs) at different molar ratios and temperatures as a green and efficient approach for microfibers (MFs) extraction. Our approach entailed the utilization of Firmiana simplex bark (FSB) fibers, enabling the production of different dimensions of FSB microfibers (FSBMFs) by combining DES pretreatment and mechanical disintegration technique. The proposed practice demonstrates the simplicity and effectiveness of the method. The morphology of the prepared microfibers was studied using the Scanning electron microscopic (SEM) technique. Additionally, the results revealed that the chemical and mechanical treatments did not significantly alter the well-preserved cellulose structure of microfibers, and a crystallinity index of 56.6 % for FSB fibers and 63.8 % for FSBMFs was observed by X-ray diffraction (XRD) analysis. Furthermore, using the freeze-drying technique, FSBMFs in water solutions produced effective aerogels for air purification application. In comparison to commercial mask (CM), FSBMF aerogels' superior hierarchical cellular architectures allowed them to attain excellent filtration efficiencies of 94.48 % (PM10) and 91.51 % (PM2.5) as well as excellent degradation properties were analyzed. The findings show that FSBMFs can be extracted from Firmiana simplex bark, a natural cellulose-rich material, using DES for environmentally friendly aerogel preparation and applications.

15.
Protein Pept Lett ; 31(5): e040724231578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967080

RESUMO

BACKGROUND: Staphylococcus aureus is a common pathogen with strains that are resistant to existing antibiotics. MurJ from S. aureus (SaMurJ), an integral membrane protein functioning as Lipid II flippase, is a potential target for developing new antibacterial agents against this pathogen. Successful expression and purification of this protein shall be useful in the development of drugs against this target. OBJECTIVE: In this study, we demonstrated the optimized expression and purification procedures of SaMurJ, identified suitable detergent for extracting and solubilizing the protein, and examined the peptidisc system to generate a detergent-free environment. METHODS: SaMurJ fused with N-terminal ten-His tag was expressed without induction. Six detergents were selected for screening the most efficient candidate for extraction and solubilization of the protein. The thermostability of the detergent-solubilized protein was assessed by evaluated temperature incubation. Different ratios of peptidisc bi-helical peptide (NSPr) to SaMurJ were mixed and the on-bead peptidisc assembly method was applied. RESULTS: SaMurJ expressed in BL21(DE3) was confirmed by peptide fingerprinting, with a yield of 1 mg SaMurJ per liter culture. DDM was identified as the optimum detergent for solubilization and the nickel affinity column enabled SaMurJ purification with a purity of ~88%. However, NSPr could not stabilize SaMurJ. CONCLUSION: The expression and purification of SaMurJ were successful, with high purity and good yield. SaMurJ can be solubilized and stabilized by a DDM-containing buffer.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Solubilidade , Expressão Gênica , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados
16.
Reprod Domest Anim ; 59(7): e14661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979950

RESUMO

Spermatogonial stem cells (SSCs) comprise the foundation of spermatogenesis and hence have great potential for fertility preservation of rare or endangered species and the development of transgenic animals and birds. Yet, developing optimal conditions for the isolation, culture, and maintenance of SSCs in vitro remains challenging, especially for chicken. The objectives of this study were to (1) find the optimal age for SSC isolation in Huaixiang chicken, (2) develop efficient protocols for the isolation, (3) enrichment, and (4) culture of isolated SSCs. In the present study, we first compared the efficiency of SSC isolation using 11 different age groups (8-79 days of age) of Huaixiang chicken. We found that the testes of 21-day-old chicken yielded the highest cell viability. Next, we compared two different enzymatic combinations for isolating SSCs and found that 0.125% trypsin and 0.02 g/L EDTA supported the highest number and viability of SSCs. This was followed by investigating optimal conditions for the enrichment of SSCs, where we observed that differential plating had the highest enrichment efficiency compared to the Percoll gradient and magnetic-activated cell sorting methods. Lastly, to find the optimal culture conditions of SSCs, we compared adding different concentrations of foetal bovine serum (FBS; 2%, 5%, 7%, and 10%) and different concentrations of GDNF, bFGF, or LIF (5, 10, 20, or 30 ng/mL). We found that a combination of 2% FBS and individual growth factors, including GDNF (20 ng/mL), bFGF (30 ng/mL), or LIF (5 ng/mL), best supported the proliferation and colony formation of SSCs. In conclusion, SSCs can be optimally isolated through enzymatic digestion from testes of 21-day-old chicken, followed by enrichment using differential plating. Furthermore, adding 2% FBS and optimized concentrations of GFNF, bFGF, or LIF in the culture promotes the proliferation of chicken SSCs.


Assuntos
Células-Tronco Germinativas Adultas , Técnicas de Cultura de Células , Separação Celular , Galinhas , Animais , Masculino , Técnicas de Cultura de Células/veterinária , Separação Celular/métodos , Separação Celular/veterinária , Testículo/citologia , Espermatogônias/citologia , Sobrevivência Celular , Células Cultivadas
17.
STAR Protoc ; 5(3): 103171, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970794

RESUMO

Here, we present a protocol to quantify interactions among difficult-to-express proteins from Drosophila cells using the select western blot-free tagged-protein interaction (SWFTI) assay. We describe steps for plasmid design, cell plating, protein expression, and immunoprecipitation preparation. We then detail procedures for protein labeling, gel purification, and protein quantification. This protocol offers a fluorescence-based technique for rapid quantification of ectopically expressed proteins that are fused to SNAP and CLIP tags without the need for membrane transfer. For complete details on the use and execution of this protocol, please refer to Lin et al.1.

18.
J Colloid Interface Sci ; 675: 263-274, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38970912

RESUMO

The removal of dye molecules in alkaline environments is an issue that should receive increased attention. In this study, the interaction mechanism between polydopamine-modified multiwalled carbon nanotubes (P-MWCNTs) and multiwalled carbon nanotubes (MWCNTs) with the cationic dye methylene blue (MB) in alkaline environments was explained in depth by adsorption, spectroscopy, and density functional theory (DFT). The mechanism of action and dominant forces between the adsorbent and adsorbate were analyzed graphically by introducing energy decomposition analysis (EDA) and an independent gradient model (IGM) into the DFT calculations. In addition, the force distribution was investigated through an isosurface. Moreover, batch adsorption studies were conducted to evaluate the performance of MWCNTs and P-MWCNTs for MB removal in alkaline environments. The maximum MB adsorption capacities of the MWCNTs and P-MWCNTs in solution were 113.3 mg‧g-1 and 230.4 mg‧g-1, respectively, at pH 9. The IGM and EDA showed that the better adsorption capacity of the P-MWCNTs originated from the enhancement of the electrostatic effect by the proton dissociation of polydopamine. Moreover, the adsorption of MB by MWCNTs and P-MWCNTs in alkaline environments was governed by dispersion and electrostatic effects, respectively. Through this study, it is hoped that progress will be made in the use of DFT to explore the mechanism of adsorbent-adsorbate interactions.

19.
J Immunoassay Immunochem ; : 1-20, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965835

RESUMO

The available prophylactic vaccines for human papillomavirus (HPV) in the market are only effective against specific types of HPV, rendering them ineffective for other types of HPV infections. The objective of this research is to investigate the stability of the recombinant protein constructed, namely chimeric L1/L2 protein from HPV type 52, with improved cross-neutralization ability. The 3D model, predicted using Alphafold, Robetta, I-Tasser, and refined with Galaxy Refinement, is validated using Ramachandran plot analysis. The stability is verified through molecular dynamics simulations, considering parameters such as RMSD, RMSF, Rg, and SASA, where stable conditions are observed. The chimeric L1/L2 protein from HPV type 52 is purified using affinity chromatography, and the His-tag is cleaved using SUMO protease to obtain pure chimeric protein with the size of ~ 55 kDa. Western blot analysis confirms binding to anti-L1 HPV type 52 polyclonal antibody. The obtained vaccine candidate can be utilized as an effective prophylactic vaccine against HPV.

20.
Sci Rep ; 14(1): 15131, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956278

RESUMO

Due to the limited reserves of uranium, the abundance of thorium compared to it and other advantages, the development of the thorium fuel cycle is of interest in different countries. The optimization of thorium extraction from a feed solution produced by Saghand ore with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) on a laboratory scale was evaluated by response surface method. The operating variables include Cyanex 272 concentration of 0.001 to 0.2 mol/L, pH of 0 to 2, equilibrium time of 5 to 60 min and aqueous to organic phase ratio of 0.5 to 2.5 were conducted. The value of R2 = 0.9695 and an error of less than 4% indicate the validity of the model. Therefore, the model is in good agreement with the experimental results. It can be said that there are significant interactions between operational parameters, which vindicate different feedbacks of the system in different operational conditions. The results showed that the 4 mol/L sulfuric acid was a suitable agent for recovering thorium ions from the loaded organic phase. In optimum conditions, the thorium purity percentage and thorium stripping efficiency were obtained 98.99 and 94.12%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...