Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
MAGMA ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361179

RESUMO

OBJECTIVE: This work presents an automated quality control (QC) system within quantitative MRI (qMRI) workflows. By leveraging the ISMRM/NIST quantitative MRI system phantom, we establish an open-source pipeline for rapid, repeatable, and accurate validation and stability tracking of sequence quantification performance across diverse clinical settings. MATERIALS AND METHODS: A microservice-based QC system for automated vial segmentation from quantitative maps was developed and tested across various MRF acquisition and protocol designs, with reports generated and returned to the scanner in real time. RESULTS: The system demonstrated consistent and repeatable value segmentation and reporting, successfully extracted all 252 T1 and T2 vial samples tested. Values extracted from the same sequence were found to be repeatable with 0.09% ± 1.23% and - 0.26% ± 2.68% intersession error, respectively. DISCUSSION: By providing real-time quantification performance assessment, this easily deployable automated QC approach streamlines sequence validation and long-term performance monitoring, vital for the broader acceptance of qMRI as a standard component of clinical protocols.

2.
ArXiv ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39314497

RESUMO

Purpose: To identify the predominant source of the T 1 variability described in the literature, which ranges from 0.6-1.1s for brain white matter at 3T. Methods: 25 T 1 -mapping methods from the literature were simulated with a mono-exponential and magnetization-transfer (MT) models, each followed by mono-exponential fitting. A single set of model parameters was assumed for the simulation of all methods, and these parameters were estimated by fitting the simulation-based to the corresponding literature T 1 values of white matter at 3T. Results: Mono-exponential simulations suggest good inter-method reproducibility and fail to explain the highly variable T 1 estimates in the literature. In contrast, MT simulations suggest that a mono-exponential fit results in a variable T 1 and explain up to 62% of the literature's variability. Conclusion: The results suggest that a mono-exponential model does not adequately describe longitudinal relaxation in biological tissue. Therefore, T 1 in biological tissue should be considered only a semi-quantitative metric that is inherently contingent upon the imaging methodology; and comparisons between different T 1 -mapping methods and the use of simplistic spin systems-such as doped-water phantoms-for validation should be viewed with caution.

3.
Heliyon ; 10(16): e36376, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39258214

RESUMO

Quantitative Magnetic Resonance Imaging (qMRI) offers precise measurements of the relaxation characteristics of microstructures, representing a cutting-edge method in non-destructive fruit analysis. This study aims to visualize information on changes in moisture status and distribution at the subcellular level of winter jujube. The 0.5 T nuclear magnetic imaging equipment was utilized to rapidly, non-invasively, and accurately capture the internal relaxation status of the sample with multiple-echo-imaging. By examining the signal and noise data, a simulated dataset was developed to tackle the optimization challenge of estimating parameters for the discrete relaxation model from the multiple-echo-imaging data, especially under conditions of low signal-to-noise ratio (SNR) and in the context of heteroscedastic noise. An optimal weighting factor and the T2NR truncation model have been identified to establish an effective experimental inversion strategy. Subsequently, multiple-echo-imaging can rapidly and stably yielded voxel-level maps under conditions of low signal-to-noise ratio. Utilizing this experimental approach, data from winter jujube was collected and analyzed, facilitating an exploration of water activity (T2 mapping) and associated water content (A2 mapping). Through analyzing winter jujube fruits across two maturity stages, this study elucidates the role of precise quantification and voxel-wise visualization in moisture status detection. The methodology presents an innovative approach for assessing internal moisture distribution in fruits.

4.
Magn Reson Med ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313759

RESUMO

PURPOSE: To compare the performance of a learned magnetization-prepared gradient echo (L-MPGRE) sequence against a commonly used sequence for 3D T2 and T1ρ mapping of the knee joint, the magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (MAPSS), on bi-exponential (BE), stretched-exponential (SE), and mono-exponential (ME) relaxation models. METHODS: We used a combined differentiable and non-differentiable optimization to learn pulse sequence structure and its parameters for 3D T2 and T1ρ mapping of the knee joint using ME, SE, and BE models. The learned pulse sequence framework was used to improve quantitative accuracy and SNR and to reduce filtering effects. We compare the measured multi-compartment values between the two sequences (n = 8), and their repeatability (n = 4) in healthy volunteers (n = 12 total). RESULTS: The voxel-wise median absolute percentage difference (MAPD) between the T2 and T1ρ maps obtained with each sequence was 18.6% and 19.9%, respectively. The T2 and T1ρ repeatability tests showed a MAPD of 18.5% and 19.1% for MAPSS, and 16.8% and 15.5% for L-MPGRE. Bland-Altman region of interest (ROI)-wise analysis shows that bias is small, close to -1.5%, and the coefficient of variation is around 5.5% when comparing ROIs from both sequences. CONCLUSION: The L-MPGRE sequences can be used as a replacement for MAPSS for T2 and T1ρ mapping in the knee cartilage with advantages, achieving similar accuracy and 15% better repeatability in only half of its scan time.

5.
Magn Reson Med ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270136

RESUMO

PURPOSE: To achieve automatic hyperparameter estimation for the model-based recovery of quantitative MR maps from undersampled data, we propose a Bayesian formulation that incorporates the signal model and sparse priors among multiple image contrasts. THEORY: We introduce a novel approximate message passing framework "AMP-PE" that enables the automatic and simultaneous recovery of hyperparameters and quantitative maps. METHODS: We employed the variable-flip-angle method to acquire multi-echo measurements using gradient echo sequence. We explored undersampling schemes to incorporate complementary sampling patterns across different flip angles and echo times. We further compared AMP-PE with conventional compressed sensing approaches such as the l 1 $$ {l}_1 $$ -norm minimization, PICS and other model-based approaches such as GraSP, MOBA. RESULTS: Compared to conventional compressed sensing approaches such as the l 1 $$ {l}_1 $$ -norm minimization and PICS, AMP-PE achieved superior reconstruction performance with lower errors in T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping and comparable performance in T 1 $$ {\mathrm{T}}_1 $$ and proton density mappings. When compared to other model-based approaches including GraSP and MOBA, AMP-PE exhibited greater robustness and outperformed GraSP in reconstruction error. AMP-PE offers faster speed than MOBA. AMP-PE performed better than MOBA at higher sampling rates and worse than MOBA at a lower sampling rate. Notably, AMP-PE eliminates the need for hyperparameter tuning, which is a requisite for all the other approaches. CONCLUSION: AMP-PE offers the benefits of model-based recovery with the additional key advantage of automatic hyperparameter estimation. It works adeptly in situations where ground-truth is difficult to obtain and in clinical environments where it is desirable to automatically adapt hyperparameters to individual protocol, scanner and patient.

6.
Magn Reson Med ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285623

RESUMO

PURPOSE: To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping. METHODS: The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. RESULTS: The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. CONCLUSION: The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.

7.
Bioengineering (Basel) ; 11(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39329643

RESUMO

Accurate prediction of renal mass subtypes, along with the WHO/ISUP grade and pathological T (pT) stage of clear cell renal cell carcinoma (ccRCC), is crucial for optimal decision making. Our study aimed to investigate the feasibility and reproducibility of motion-robust radial T2 mapping in differentiating lipid-poor angiomyolipoma (MFAML) from RCC and characterizing the WHO/ISUP grade and pT stage of ccRCC. Finally, 92 patients undergoing renal radial T2 mapping and ZOOMit DWI were recruited. The T2 values and apparent diffusion coefficient (ADC) were analyzed. Correlation coefficients were calculated between ADC and T2 values. Notably, ccRCC exhibited higher T2 and ADC values than MFAML (p < 0.05). T2 values were lower in the higher WHO/ISUP grade and pT stage of ccRCC (all p < 0.05). ADC showed no significant difference for pT stage (p = 0.056). T2 values revealed a higher area under the curve (AUC) in evaluating the WHO/ISUP grade compared to ADC (0.936 vs. 0.817, p = 0.027). T2 values moderately positively correlated with ADC (r = 0.675, p < 0.001). In conclusion, quantitative motion-robust radial T2 mapping is feasible for characterizing solid renal masses and could provide additional value for multiparametric imaging in predicting WHO/ISUP grade and pT stage of ccRCC.

8.
Neuroimage ; 300: 120850, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39260782

RESUMO

Non-invasive myelin water fraction (MWF) and g-ratio mapping using microstructural MRI have the potential to offer critical insights into brain microstructure and our understanding of neuroplasticity and neuroinflammation. By leveraging a unique panel of variably hypomyelinating mouse strains, we validated a high-resolution, model-free image reconstruction method for whole-brain MWF mapping. Further, by employing a bipolar gradient echo MRI sequence, we achieved high spatial resolution and robust mapping of MWF and g-ratio across the whole mouse brain. Our regional white matter-tract specific analyses demonstrated a graded decrease in MWF in white matter tracts which correlated strongly with myelin basic protein gene (Mbp) mRNA levels. Using these measures, we derived the first sensitive calibrations between MWF and Mbp mRNA in the mouse. Minimal changes in axonal density supported our hypothesis that observed MWF alterations stem from hypomyelination. Overall, our work strongly emphasizes the potential of non-invasive, MRI-derived MWF and g-ratio modeling for both preclinical model validation and ultimately translation to humans.


Assuntos
Imageamento por Ressonância Magnética , Proteína Básica da Mielina , Bainha de Mielina , Substância Branca , Animais , Bainha de Mielina/metabolismo , Camundongos , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Feminino
9.
Radiol Phys Technol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251498

RESUMO

In a 0.3 T permanent-magnet magnetic resonance imaging (MRI) system, quantifying myelin content is challenging owing to long imaging times and low signal-to-noise ratio. macromolecular proton fraction (MPF) offers a quantitative assessment of myelin in the nervous system. We aimed to demonstrate the practical feasibility of MPF mapping in the brain using a 0.3 T MRI. Both 0.3 T and 3.0 T MRI systems were used. The MPF-mapping protocol used a standard 3D fast spoiled gradient-echo sequence based on the single-point reference method. Proton density, T1, and magnetization transfer-weighted images were obtained from a protein phantom at 0.3 T and 3.0 T to calculate MPF maps. MPF was measured in all phantom sections to assess its relationship to protein concentration. We acquired MPF maps for 16 and 8 healthy individuals at 0.3 T and 3.0 T, respectively, measuring MPF in nine brain tissues. Differences in MPF between 0.3 T and 3.0 T, and between 0.3 T and previously reported MPF at 0.5 T, were investigated. Pearson's correlation coefficient between protein concentration and MPF at 0.3 T and 3.0 T was 0.92 and 0.90, respectively. The 0.3 T MPF of brain tissue strongly correlated with 3.0 T MPF and literature values measured at 0.5 T. The absolute mean differences in MPF between 0.3 T and 0.5 T were 0.42% and 1.70% in white and gray matter, respectively. Single-point MPF mapping using 0.3 T permanent-magnet MRI can effectively assess myelin content in neural tissue.

10.
J Magn Reson Open ; 202024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324129

RESUMO

Conventional diagnostic images from Magnetic Resonance Imaging (MRI) are typically qualitative and require subjective interpretation. Alternatively, quantitative MRI (qMRI) methods have become more prevalent in recent years with multiple clinical and preclinical imaging applications. Quantitative MRI studies on preclinical MRI scanners are being used to objectively assess tissues and pathologies in animal models and to evaluate new molecular MRI contrast agents. Low-field preclinical MRI scanners (≤3.0T) are particularly important in terms of evaluating these new MRI contrast agents at human MRI field strengths. Unfortunately, these low-field preclinical qMRI methods are challenged by long acquisition times, intrinsically low MRI signal levels, and susceptibility to motion artifacts. In this study, we present a new rapid qMRI method for a preclinical 3.0T MRI scanner that combines a Spiral Acquisition with a Matching-Based Algorithm (SAMBA) to rapidly and quantitatively evaluate MRI contrast agents. In this initial development, we compared SAMBA with gold-standard Spin Echo MRI methods using Least Squares Fitting (SELSF) in vitro phantoms and demonstrated shorter scan times without compromising measurement accuracy or repeatability. These initial results will pave the way for future in vivo qMRI studies using state-of-the-art chemical probes.

11.
Magn Reson Med ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219160

RESUMO

PURPOSE: To introduce quantitative rapid gradient-echo (QRAGE), a novel approach for the simultaneous mapping of multiple quantitative MRI parameters, including water content, T1, T2*, and magnetic susceptibility at ultrahigh field strength. METHODS: QRAGE leverages a newly developed multi-echo MPnRAGE sequence, facilitating the acquisition of 171 distinct contrast images across a range of inversion and TE points. To maintain a short acquisition time, we introduce MIRAGE2, a novel model-based reconstruction method that exploits prior knowledge of temporal signal evolution, represented as damped complex exponentials. MIRAGE2 minimizes local Block-Hankel and Casorati matrices. Parameter maps are derived from the reconstructed contrast images through postprocessing steps. We validate QRAGE through extensive simulations, phantom studies, and in vivo experiments, demonstrating its capability for high-precision imaging. RESULTS: In vivo brain measurements show the promising performance of QRAGE, with test-retest SDs and deviations from reference methods of < 0.8% for water content, < 17 ms for T1, and < 0.7 ms for T2*. QRAGE achieves whole-brain coverage at a 1-mm isotropic resolution in just 7 min and 15 s, comparable to the acquisition time of an MP2RAGE scan. In addition, QRAGE generates a contrast image akin to the UNI image produced by MP2RAGE. CONCLUSION: QRAGE is a new, successful approach for simultaneously mapping multiple MR parameters at ultrahigh field.

12.
Adv Clin Radiol ; 6(1): 31-39, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39185367

RESUMO

MRI and MRCP play an essential role in diagnosing CP by imaging pancreatic parenchyma and ducts. Quantitative and semi-quantitative MR imaging offers potential advantages over conventional MR imaging, including simplicity of analysis, quantitative and population-based comparisons, and more direct interpretation of disease progression or response to drug therapy. Using parenchymal imaging techniques may provide quantitative metrics for determining the presence and severity of acinar cell loss and aid in diagnosing CP. Given that the parenchymal changes of CP precede the ductal involvement, there would be a significant benefit from developing a new MRI/MRCP based, more robust diagnostic criteria combining ductal and parenchymal findings.

13.
J Magn Reson Imaging ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192381

RESUMO

BACKGROUND: Quantitative parametric mapping is an increasingly important tool for noninvasive assessment of chronic liver disease. Conventional parametric mapping techniques require multiple breath-held acquisitions and provide limited anatomic coverage. PURPOSE: To investigate a multi-inversion spin and gradient echo (MI-SAGE) technique for simultaneous estimation of T1, T2, and T2* of the liver. STUDY TYPE: Prospective. SUBJECTS: Sixteen research participants, both adult and pediatric (age 17.5 ± 4.6 years, eight male), with and without known liver disease (seven asymptomatic healthy controls, two fibrotic liver disease, five steatotic liver disease, and two fibrotic and steatotic liver disease). FIELD STRENGTH/SEQUENCE: 1.5 T, single breath-hold and respiratory triggered MI-SAGE, breath-hold modified Look-Locker inversion recovery (MOLLI, T1 mapping), breath-hold gradient and spin echo (GRASE, T2 mapping), and multiple gradient echo (mGRE, T2* mapping) sequences. ASSESSMENT: Agreement between hepatic T1, T2, and T2* estimated using MI-SAGE and conventional parametric mapping sequences was evaluated. Repeatability and reproducibility of MI-SAGE were evaluated using a same-session acquisition and second-session acquisition. STATISTICAL TESTS: Bland-Altman analysis with bias assessment and limits of agreement (LOA) and intraclass correlation coefficients (ICC). RESULTS: Hepatic T1, T2, and T2* estimates obtained using the MI-SAGE technique had mean biases of 72 (LOA: -22 to 166) msec, -3 (LOA: -10 to 5) msec, and 2 (LOA: -5 to 8) msec (single breath-hold) and 36 (LOA: -43 to 120) msec, -3 (LOA: -17 to 11) msec, and 4 (LOA: -3 to 11) msec (respiratory triggered), respectively, in comparison to conventional acquisitions using MOLLI, GRASE, and mGRE. All MI-SAGE estimates had strong repeatability and reproducibility (ICC > 0.72). DATA CONCLUSION: Hepatic T1, T2, and T2* estimates obtained using an MI-SAGE technique were comparable to conventional methods, although there was a 12%/6% for breath-hold/respiratory triggered underestimation of T1 values compared to MOLLI. Both respiratory triggered and breath-hold MI-SAGE parameter maps demonstrated strong repeatability and reproducibility. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

14.
Comput Methods Programs Biomed ; 256: 108377, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39180913

RESUMO

BACKGROUND AND OBJECTIVES: Artificial intelligence (AI) is revolutionizing Magnetic Resonance Imaging (MRI) along the acquisition and processing chain. Advanced AI frameworks have been applied in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. However, existing frameworks are often designed to perform tasks independently of each other or are focused on specific models or single datasets, limiting generalization. This work introduces the Advanced Toolbox for Multitask Medical Imaging Consistency (ATOMMIC), a novel open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several tasks using deep learning (DL) models and enables MultiTask Learning (MTL) to perform related tasks in an integrated manner, targeting generalization in the MRI domain. METHODS: We conducted a comprehensive literature review and analyzed 12,479 GitHub repositories to assess the current landscape of AI frameworks for MRI. Subsequently, we demonstrate how ATOMMIC standardizes workflows and improves data interoperability, enabling effective benchmarking of various DL models across MRI tasks and datasets. To showcase ATOMMIC's capabilities, we evaluated twenty-five DL models on eight publicly available datasets, focusing on accelerated MRI reconstruction, segmentation, quantitative parameter map estimation, and joint accelerated MRI reconstruction and segmentation using MTL. RESULTS: ATOMMIC's high-performance training and testing capabilities, utilizing multiple GPUs and mixed precision support, enable efficient benchmarking of multiple models across various tasks. The framework's modular architecture implements each task through a collection of data loaders, models, loss functions, evaluation metrics, and pre-processing transformations, facilitating seamless integration of new tasks, datasets, and models. Our findings demonstrate that ATOMMIC supports MTL for multiple MRI tasks with harmonized complex-valued and real-valued data support while maintaining active development and documentation. Task-specific evaluations demonstrate that physics-based models outperform other approaches in reconstructing highly accelerated acquisitions. These high-quality reconstruction models also show superior accuracy in estimating quantitative parameter maps. Furthermore, when combining high-performing reconstruction models with robust segmentation networks through MTL, performance is improved in both tasks. CONCLUSIONS: ATOMMIC advances MRI reconstruction and analysis by leveraging MTL and ensuring consistency across tasks, models, and datasets. This comprehensive framework serves as a versatile platform for researchers to use existing AI methods and develop new approaches in medical imaging.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Software , Algoritmos
15.
Magn Reson Med ; 92(6): 2707-2722, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39129209

RESUMO

PURPOSE: Echo modulation curve (EMC) modeling enables accurate quantification of T2 relaxation times in multi-echo spin-echo (MESE) imaging. The standard EMC-T2 mapping framework, however, requires sufficient echoes and cumbersome pixel-wise dictionary-matching steps. This work proposes a deep learning version of EMC-T2 mapping, called DeepEMC-T2 mapping, to efficiently estimate accurate T2 maps from fewer echoes. METHODS: DeepEMC-T2 mapping was developed using a modified U-Net to estimate both T2 and proton density (PD) maps directly from MESE images. The network implements several new features to improve the accuracy of T2/PD estimation. A total of 67 MESE datasets acquired in axial orientation were used for network training and evaluation. An additional 57 datasets acquired in coronal orientation with different scan parameters were used to evaluate the generalizability of the framework. The performance of DeepEMC-T2 mapping was evaluated in seven experiments. RESULTS: Compared to the reference, DeepEMC-T2 mapping achieved T2 estimation errors from 1% to 11% and PD estimation errors from 0.4% to 1.5% with ten/seven/five/three echoes, which are more accurate than standard EMC-T2 mapping. By incorporating datasets acquired with different scan parameters and orientations for joint training, DeepEMC-T2 exhibits robust generalizability across varying imaging protocols. Increasing the echo spacing and including longer echoes improve the accuracy of parameter estimation. The new features proposed in DeepEMC-T2 mapping all enabled more accurate T2 estimation. CONCLUSIONS: DeepEMC-T2 mapping enables simplified, efficient, and accurate T2 quantification directly from MESE images without dictionary matching. Accurate T2 estimation from fewer echoes allows for increased volumetric coverage and/or higher slice resolution without prolonging total scan times.


Assuntos
Algoritmos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
16.
NMR Biomed ; : e5244, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152756

RESUMO

This study aimed to optimize the sampling of spin-lock times (TSLs) in quantitative T1ρ mapping for improved reproducibility. Two new TSL sampling schemes were proposed: (i) reproducibility-guided random sampling (RRS) and (ii) reproducibility-guided optimal sampling (ROS). They were compared to the existing linear sampling (LS) and precision-guided sampling (PS) schemes for T1ρ reproducibility through numerical simulations, phantom experiments, and volunteer studies. Each study evaluated the four sampling schemes with three commonly used T1ρ preparations based on composite and balanced spin-locking. Additionally, the phantom and volunteer studies investigated the impact of B0 and B1 field inhomogeneities on T1ρ reproducibility, respectively. The reproducibility was assessed using the coefficient of variation (CoV) by repeating the T1ρ measurements eight times for phantom experiments and five times for volunteer studies. Numerical simulations resulted in lower mean CoVs for the proposed RRS (1.74%) and ROS (0.68%) compared to LS (2.93%) and PS (3.68%). In the phantom study, the mean CoVs were also lower for RRS (2.7%) and ROS (2.6%) compared to LS (4.1%) and PS (3.1%). Furthermore, the mean CoVs of the proposed RRS and ROS were statistically lower (P < 0.001) compared to existing LS and PS schemes at a B1 offset of 20%. In the volunteer study, consistently lower mean CoVs were observed in bilateral thigh muscles for RRS (9.3%) and ROS (9.2%) compared to LS (10.9%) and PS (10.2%), and the difference was more prominent at B0 offsets higher than 50 Hz. The proposed sampling schemes improve the reproducibility of quantitative T1ρ mapping by optimizing the selection of TSLs. This improvement is especially beneficial for longitudinal studies that track and monitor disease progression and treatment response.

17.
ArXiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39148933

RESUMO

Quantification of tissue parameters using MRI is emerging as a powerful tool in clinical diagnosis and research studies. The need for multiple long scans with different acquisition parameters prohibits quantitative MRI from reaching widespread adoption in routine clinical and research exams. Accelerated parameter mapping techniques leverage parallel imaging, signal modelling and deep learning to offer more practical quantitative MRI acquisitions. However, the achievable acceleration and the quality of maps are often limited. Joint MAPLE is a recent state-of-the-art multi-parametric and scan-specific parameter mapping technique with promising performance at high acceleration rates. It synergistically combines parallel imaging, model-based and machine learning approaches for joint mapping of T 1 , T 2 * , proton density and the field inhomogeneity. However, Joint MAPLE suffers from prohibitively long reconstruction time to estimate the maps from a multi-echo, multi-flip angle (MEMFA) dataset at high resolution in a scan-specific manner. In this work, we propose a faster version of Joint MAPLE which retains the mapping performance of the original version. Coil compression, random slice selection, parameter-specific learning rates and transfer learning are synergistically combined in the proposed framework. It speeds-up the reconstruction time up to 700 times than the original version and processes a whole-brain MEMFA dataset in 21 minutes on average, which originally requires ~260 hours for Joint MAPLE. The mapping performance of the proposed framework is ~2-fold better than the standard and the state-of-the-art evaluated reconstruction techniques on average in terms of the root mean squared error.

18.
Brain ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110638

RESUMO

Developmental dyslexia (DD) is one of the most common learning disorders, affecting millions of children and adults worldwide. To date, scientific research has attempted to explain DD primarily based on pathophysiological alterations in the cerebral cortex. In contrast, several decades ago, pioneering research on five post-mortem human brains suggested that a core characteristic of DD might be morphological alterations in a specific subdivision of the visual thalamus - the magnocellular LGN (M-LGN). However, due to considerable technical challenges in investigating LGN subdivisions non-invasively in humans, this finding was never confirmed in-vivo, and its relevance for DD pathology remained highly controversial. Here, we leveraged recent advances in high-resolution magnetic resonance imaging (MRI) at high field strength (7 Tesla) to investigate the M-LGN in DD in-vivo. Using a case-control design, we acquired data from a large sample of young adults with DD (n = 26; age 28 ± 7 years; 13 females) and matched control participants (n = 28; age 27 ± 6 years; 15 females). Each participant completed a comprehensive diagnostic behavioral test battery and participated in two MRI sessions, including three functional MRI experiments and one structural MRI acquisition. We measured blood-oxygen-level-dependent responses and longitudinal relaxation rates to compare both groups on LGN subdivision function and myelination. Based on previous research, we hypothesized that the M-LGN is altered in DD and that these alterations are associated with a key DD diagnostic score, i.e., rapid letter and number naming (RANln). The results showed aberrant responses of the M-LGN in DD compared to controls, which was reflected in a different functional lateralization of this subdivision between groups. These alterations were associated with RANln performance, specifically in male DD. We also found lateralization differences in the longitudinal relaxation rates of the M-LGN in DD relative to controls. Conversely, the other main subdivision of the LGN, the parvocellular LGN (P-LGN), showed comparable blood-oxygen-level-dependent responses and longitudinal relaxation rates between groups. The present study is the first to unequivocally show that M-LGN alterations are a hallmark of DD, affecting both the function and microstructure of this subdivision. It further provides a first functional interpretation of M-LGN alterations and a basis for a better understanding of sex-specific differences in DD with implications for prospective diagnostic and treatment strategies.

19.
Eur Radiol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177856

RESUMO

OBJECTIVES: To investigate the association between magnetic resonance imaging (MRI)-based ligamentum teres lesions (LTL) and structural hip degeneration. METHODS: Bilateral 3-T hip MRIs of participants (n = 93 [36 men]; mean age ( ± SD) 51 years ± 15.4) recruited from the community and the orthopedic clinic of a single medical center were included. Clinical and imaging data acquired included hip disability and osteoarthritis outcome scores, semi-quantitative scoring of hip osteoarthritis on MRI (SHOMRI) scores on fluid-sensitive sequences, and cartilage T1ρ/T2 compositional sequences. An MRI-based LTL scoring system, incorporating continuity, thickening, and signal intensity, ranging from 0 (normal) to 4 (complete tear) was constructed. Hip morphological features associated with LTL, based on functional or anatomical relationships to LT, were defined. Relationships between MRI-LT scores and SHOMRI, global/regional cartilage T1ρ/T2, and proposed morphological abnormalities and LTL were explored by mixed effects linear and logistic regression models. RESULTS: In 82 (46.1%) hips, no pain was documented; 118 (63.4%) and 68 (36.6%) hips were graded as KL-grade ≤ 1 and ≥ 2, respectively. Compared to MRI-LT score = 0 (normal), score = 4 (complete tear) revealed significantly worse subchondral bony degenerative changes for bone marrow lesions (SHOMRI-BML) and subchondral cysts (SHOMRI-sc) (p < 0.001, p = 0.015, respectively). Global acetabular T1ρ, femoral T2 were significantly increased for abnormal MRI-LT scores (p-range = 0.005-0.032). Regional analyses revealed significantly increased T1ρ/T2 in central acetabular/increased T2 in off-central femoral regions (p-range = 0.005-0.046). Pulvinar effusion-synovitis, shallow fovea, and foveal osteophytes were significantly associated with abnormal LT MRI findings (p-range = < 0.001-0.044). CONCLUSION: MRI abnormalities of LT are associated with worse SHOMRI-sc/BML scores, indicative of hip osteoarthritis and higher T1ρ and T2 that differ by region. Pulvinar effusion-synovitis and changes in femoral head morphology are associated with LTL. CLINICAL RELEVANCE STATEMENT: Abnormal ligamentum teres findings identified via MRI are associated with structural degenerative changes of the hip joint and alterations in acetabular and femoral cartilage compositions show spatial differences in relation to LTL. KEY POINTS: The clinical significance of common ligamentum teres lesions (LTL) on MRI is not well understood. LTL identified by an MRI-based scoring system is associated with worse biomarkers, indicating more advanced degenerative hip changes. Effusion-synovitis signal at pulvinar, shallow fovea capitis, and foveal osteophytes are associated with LTL on imaging.

20.
NMR Biomed ; : e5228, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169274

RESUMO

Quantitative maps of rotating frame relaxation (RFR) time constants are sensitive and useful magnetic resonance imaging tools with which to evaluate tissue integrity in vivo. However, to date, only moderate image resolutions of 1.6 x 1.6 x 3.6 mm3 have been used for whole-brain coverage RFR mapping in humans at 3 T. For more precise morphometrical examinations, higher spatial resolutions are desirable. Towards achieving the long-term goal of increasing the spatial resolution of RFR mapping without increasing scan times, we explore the use of the recently introduced Transform domain NOise Reduction with DIstribution Corrected principal component analysis (T-NORDIC) algorithm for thermal noise reduction. RFR acquisitions at 3 T were obtained from eight healthy participants (seven males and one female) aged 52 ± 20 years, including adiabatic T1ρ, T2ρ, and nonadiabatic Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n = 4 (RAFF4) with both 1.6 x 1.6 x 3.6 mm3 and 1.25 x 1.25 x 2 mm3 image resolutions. We compared RFR values and their confidence intervals (CIs) obtained from fitting the denoised versus nondenoised images, at both voxel and regional levels separately for each resolution and RFR metric. The comparison of metrics obtained from denoised versus nondenoised images was performed with a two-sample paired t-test and statistical significance was set at p less than 0.05 after Bonferroni correction for multiple comparisons. The use of T-NORDIC on the RFR images prior to the fitting procedure decreases the uncertainty of parameter estimation (lower CIs) at both spatial resolutions. The effect was particularly prominent at high-spatial resolution for RAFF4. Moreover, T-NORDIC did not degrade map quality, and it had minimal impact on the RFR values. Denoising RFR images with T-NORDIC improves parameter estimation while preserving the image quality and accuracy of all RFR maps, ultimately enabling high-resolution RFR mapping in scan times that are suitable for clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA