Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139337

RESUMO

An accurate, rapid, and selective quantitative nuclear magnetic resonance method was developed and validated to assess the purity of IMM-H014, a novel drug for the treatment of metabolic-associated fatty liver disease (MAFLD), and four related substances (impurities I, II, III, and IV). In this study, we obtained spectra of IMM--H014 and related substances in deuterated chloroform using dimethyl terephthalate (DMT) as the internal standard reference. Quantification was performed using the 1H resonance signals at δ 8.13 ppm for DMT and δ 6.5-7.5 ppm for IMM-H014 and its related substances. Several key experimental parameters were investigated and optimized, such as pulse angle and relaxation delay. Methodology validation was conducted based on the International Council for Harmonization guidelines and verified with satisfactory specificity, precision, linearity, accuracy, robustness, and stability. In addition, the calibration results of the samples were consistent with those obtained from the mass balance method. Thus, this research provides a reliable and practical protocol for purity analysis of IMM-H014 and its critical impurities and contributes to subsequent clinical quality control research.


Assuntos
Hepatopatias , Humanos , Espectroscopia de Ressonância Magnética/métodos , Controle de Qualidade , Calibragem
2.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6396-6402, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211996

RESUMO

A quantitative proton nuclear magnetic resonance(qHNMR) method was established to determine the glucose content in commercially available Massa Medicata Fermentata(MMF) products and explore the variations of glucose content in MMF products during processing. The qHNMR spectrum of MMF in deuterium oxide was obtained with 2,2,3,3-d_4-3-(trimethylsilyl) propionate sodium salt as the internal standard substance. With the doublet peaks of terminal hydrogen of glucose with chemical shift at δ 4.65 and δ 5.24 as quantitative peaks, the content of glucose in MMF samples was determined. The glucose content showed a good linear relationship within the range of 0.10-6.44 mg·mL~(-1). The relative standard deviations(RSDs) of precision, stability, repeatability, and recovery for determination were all less than 2.3%. The glucose content varied in different commercially available MMF samples, which were associated with the different fermentation days, wheat bran-to-flour ratios, and processing methods. The glucose content in MMF first increased and then decreased over the fermentation time. Compared with the MMF products fermented with wheat bran or flour alone, the products fermented with both wheat bran and flour had increased glucose. The glucose content of bran-fried MMF was slightly lower than that of raw MMF, while the glucose content in charred MMF was extremely low. In conclusion, the qHNMR method established in this study is simple, fast, and accurate, serving as a new method for determining the glucose content in MMF. Furthermore, this study clarifies the variations of glucose content in MMF during processing, which can not only indicate the processing degree but also provide a scientific basis for revealing the fermentation mechanism and improving the quality control of MMF.


Assuntos
Medicamentos de Ervas Chinesas , Prótons , Medicamentos de Ervas Chinesas/química , Fibras na Dieta , Espectroscopia de Ressonância Magnética
3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008838

RESUMO

A quantitative proton nuclear magnetic resonance(qHNMR) method was established to determine the glucose content in commercially available Massa Medicata Fermentata(MMF) products and explore the variations of glucose content in MMF products during processing. The qHNMR spectrum of MMF in deuterium oxide was obtained with 2,2,3,3-d_4-3-(trimethylsilyl) propionate sodium salt as the internal standard substance. With the doublet peaks of terminal hydrogen of glucose with chemical shift at δ 4.65 and δ 5.24 as quantitative peaks, the content of glucose in MMF samples was determined. The glucose content showed a good linear relationship within the range of 0.10-6.44 mg·mL~(-1). The relative standard deviations(RSDs) of precision, stability, repeatability, and recovery for determination were all less than 2.3%. The glucose content varied in different commercially available MMF samples, which were associated with the different fermentation days, wheat bran-to-flour ratios, and processing methods. The glucose content in MMF first increased and then decreased over the fermentation time. Compared with the MMF products fermented with wheat bran or flour alone, the products fermented with both wheat bran and flour had increased glucose. The glucose content of bran-fried MMF was slightly lower than that of raw MMF, while the glucose content in charred MMF was extremely low. In conclusion, the qHNMR method established in this study is simple, fast, and accurate, serving as a new method for determining the glucose content in MMF. Furthermore, this study clarifies the variations of glucose content in MMF during processing, which can not only indicate the processing degree but also provide a scientific basis for revealing the fermentation mechanism and improving the quality control of MMF.


Assuntos
Prótons , Medicamentos de Ervas Chinesas/química , Fibras na Dieta , Espectroscopia de Ressonância Magnética
4.
Plants (Basel) ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214881

RESUMO

Pueraria lobata (Willd.) Ohwi. is a widely used medicinal plant in Korea, China, and Japan. The flower of P. lobata (Puerariae Flos) contains various bioactive substances such as triterpenoidal saponins and isoflavonoids. In this study, we developed a quantitative analysis of the isoflavones of Puerariae Flos by quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy using the internal calibrant (IC). From the qHNMR results, the isoflavone content was found to be 7.99% and 10.57% for the MeOH sonication extract (PLs) and the MeOH reflux extract (PLr) of Puerariae Flos, respectively. The quantified isoflavone content was validated using the conventional analytical method, high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The present study shows that validated qHNMR spectroscopy is a reliable method for quantifying and standardizing the isoflavone content in Puerariae Flos.

5.
AAPS PharmSciTech ; 22(1): 11, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270172

RESUMO

Glycerides are the main components of oils, and fats, used in formulated products in the food and cosmetic industry as well as in the pharmaceutical product industry. However, there is limited literature available on the analysis of the chemical composition of glycerides. The lack of a suitable analytical method for complete chemical profiling of glycerides is one of the bottlenecks in understanding and controlling the change in chemical composition during processing, formulation, and storage. Thus, the aim of the present study is to develop a calibration-free quantitative proton nuclear magnetic resonance (qHNMR) method for the simultaneous quantification of different components of glycerides. The qHNMR method was developed for the quantification of mono-, di-, and triglycerides; their positional isomers; free fatty acids; and glycerol content. The accuracy, precision, and robustness of the developed method were evaluated and were found suitable for the quantitative analysis of five batches of marketed excipient. The study demonstrates the potential of qHNMR method for the quantification of different components of glycerides in various marketed products. The method has the ability to identify the variability of glycerides among different batches and suppliers in terms of chemical composition and also to discern the changes during storage.


Assuntos
Excipientes/química , Glicerídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Triglicerídeos/análise
6.
Molecules ; 20(7): 12114-24, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26147583

RESUMO

A simple, rapid, accurate, and selective quantitative nuclear magnetic resonance method for the determination of tadalafil in bulk drugs and its tablets was established and evaluated. Spectra were obtained in dimethylsulfoxide-d6 using 2,4-dinitrotoluene as the internal standard. In this study, the method's linearity, range, limit of quantification, stability, precision, and accuracy were validated. The results were consistent with those obtained from high-performance liquid chromatography analysis. Thus, the proposed method is a useful and practical tool for the determination of tadalafil in bulk drugs and its tablets.


Assuntos
Preparações Farmacêuticas/química , Inibidores da Fosfodiesterase 5/análise , Espectroscopia de Prótons por Ressonância Magnética/métodos , Comprimidos/química , Tadalafila/análise , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...