Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Heliyon ; 10(11): e31898, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882294

RESUMO

Biofilms are complex communities of microorganisms that cause systemic infections, resistance development and delay in healing wounds. Biofilms can form in various parts of the human body, such as the teeth, lungs, urinary tract, and wounds. Biofilm complicates the effects of antibiotics in treating infections. In search of a cure, a plant-based phyto component was selected for this investigation as an anti-quorum-mediated biofilm restricting agent in Gram-negative Chromobacterium violaceum and Gram-positive Staphylococcus aureus. The bioactive components in Delonix elata (DE) ethyl acetate extract were identified using Gas chromatography and mass spectrometry. The extract was examined for toxicity using 3T3 cell lines and brine shrimp and ascertained to be non-toxic. Violacein was inhibited up to 68.81 % in C. violaceum at 0.6 mg/ml concentration. Hemolysin synthesis impediments in C. violaceum and S. aureus were 80 % and 51.35 %, respectively, at 0.6 mg/ml of DE extract. At 0.6 mg/ml, EPS was abated by up to 49 % in C. violaceum and 35.26 % in S. aureus. DE extract prevented biofilm formation in C. violaceum and S. aureus up to 76.45 % and 58.15 %, respectively, while associated eDNA was suppressed up to 67.50 % and 53.47 % at the respective sub-MIC concentrations. Expression of genes such as cviI, cviR, vioA, vioB, and vioE were dramatically reduced in C. violaceum, while genes such as agrA, sarA, fnbA, and fnbB were significantly reduced in S. aureus. Docking demonstrates that two or more DE molecules bind efficiently to the QS receptors of C. violaceum and S. aureus. Thus, DE extract can be investigated for therapeutic purposes against pathogenic microorganisms by rendering them less virulent through quorum quenching mediated action.

2.
Arch Microbiol ; 206(7): 324, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913239

RESUMO

Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.


Assuntos
Monoterpenos Acíclicos , Antibacterianos , Biofilmes , Sinergismo Farmacológico , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Triclosan , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Triclosan/farmacologia , Biofilmes/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Antibacterianos/farmacologia , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Piocianina/metabolismo
3.
Curr Biol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38942019

RESUMO

A dynamic mucous layer containing numerous micro-organisms covers the surface of corals and has multiple functions including both removal of sediment and "food gathering."1 It is likely to also act as the primary barrier to infection; various proteins and compounds with antimicrobial activity have been identified in coral mucus, though these are thought to be largely or exclusively of microbial origin. As in Hydra,2 anti-microbial peptides (AMPs) are likely to play major roles in regulating the microbiomes of corals.3,4 Some eukaryotes employ a complementary but less obvious approach to manipulate their associated microbiome by interfering with quorum signaling, effectively preventing bacteria from coordinating gene expression across a population. Our investigation of immunity in the reef-building coral Acropora millepora,5 however, led to the discovery of a coral gene referred to here as AmNtNH1 that can inactivate a range of acyl homoserine lactones (AHLs), common bacterial quorum signaling molecules, and is induced on immune challenge of adult corals and expressed during the larval settlement process. Closely related proteins are widely distributed within the Scleractinia (hard corals) and some other cnidarians, with multiple paralogs in Acropora, but their closest relatives are bacterial, implying that these are products of one or more lateral gene transfer events post-dating the cnidarian-bilaterian divergence. The deployment by corals of genes used by bacteria to compete with other bacteria reflects a mechanism of microbiome manipulation previously unknown in Metazoa but that may apply more generally.

4.
Molecules ; 29(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893310

RESUMO

The human paraoxonase 2 (PON2) is the oldest member of a small family of arylesterase and lactonase enzymes, representing the first line of defense against bacterial infections and having a major role in ROS-associated diseases such as cancer, cardiovascular diseases, neurodegeneration, and diabetes. Specific Post-Translational Modifications (PTMs) clustering nearby two residues corresponding to pon2 polymorphic sites and their impact on the catalytic activity are not yet fully understood. Thus, the goal of the present study was to develop an improved PON2 purification protocol to obtain a higher amount of protein suitable for in-depth biochemical studies and biotechnological applications. To this end, we also tested several compounds to stabilize the active monomeric form of the enzyme. Storing the enzyme at 4 °C with 30 mM Threalose had the best impact on the activity, which was preserved for at least 30 days. The catalytic parameters against the substrate 3-Oxo-dodecanoyl-Homoserine Lactone (3oxoC12-HSL) and the enzyme ability to interfere with the biofilm formation of Pseudomonas aeruginosa (PAO1) were determined, showing that the obtained enzyme is well suited for downstream applications. Finally, we used the purified rPON2 to detect, by the direct molecular fishing (DMF) method, new putative PON2 interactors from soluble extracts of HeLa cells.


Assuntos
Arildialquilfosfatase , Proteômica , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/química , Humanos , Proteômica/métodos , Redobramento de Proteína , Pseudomonas aeruginosa/enzimologia , Estabilidade Enzimática , Biofilmes , Processamento de Proteína Pós-Traducional
5.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886121

RESUMO

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 µg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 µg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 µg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Prunus persica , Percepção de Quorum , Prata , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Prata/química , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/microbiologia , Folhas de Planta/química , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Prunus persica/microbiologia , Aizoaceae/química , Fatores de Virulência/metabolismo
6.
Front Microbiol ; 15: 1387114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841057

RESUMO

Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (Cu), and iron oxide (Fe3O4) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs.

7.
Microb Pathog ; 193: 106730, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851361

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.

8.
Microbiol Res ; 285: 127781, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795406

RESUMO

Pantoea agglomerans is considered one of the most ubiquitous and versatile organisms that include strains that induce diseases in various crops and occasionally cause opportunistic infections in humans. To develop effective strategies to mitigate its impact on plant health and agricultural productivity, a comprehensive investigation is crucial for better understanding its pathogenicity. One proposed eco-friendly approach involves the enzymatic degradation of quorum sensing (QS) signal molecules like N-acylhomoserine lactones (AHLs), known as quorum quenching (QQ), offering potential treatment for such bacterial diseases. In this study the production of C4 and 3-oxo-C6HSL was identified in the plant pathogenic P. agglomerans CFBP 11141 and correlated to enzymatic activities such as amylase and acid phosphatase. Moreover, the heterologous expression of a QQ enzyme in the pathogen resulted in lack of AHLs production and the attenuation of the virulence by mean of drastically reduction of soft rot disease in carrots and cherry tomatoes. Additionally, the interference with the QS systems of P. agglomerans CFBP 11141 by two the plant growth-promoting and AHL-degrading bacteria (PGP-QQ) Pseudomonas segetis P6 and Bacillus toyonensis AA1EC1 was evaluated as a potential biocontrol approach for the first time. P. segetis P6 and B. toyonensis AA1EC1 demonstrated effectiveness in diminishing soft rot symptoms induced by P. agglomerans CFBP 11141 in both carrots and cherry tomatoes. Furthermore, the virulence of pathogen notably decreased when co-cultured with strain AA1EC1 on tomato plants.


Assuntos
Acil-Butirolactonas , Pantoea , Doenças das Plantas , Percepção de Quorum , Solanum lycopersicum , Pantoea/metabolismo , Pantoea/genética , Pantoea/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Virulência , Acil-Butirolactonas/metabolismo , Solanum lycopersicum/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
9.
J Microbiol ; 62(6): 449-461, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814538

RESUMO

Quorum quenching refers to any mechanism that inhibits quorum sensing processes. In this study, quorum quenching activity among bacteria inhabiting riverside soil was screened, and a novel Gram-stain-negative, rod shaped bacterial strain designated MMS21-HV4-11T, which showed the highest level of quorum quenching activity, was isolated and subjected to further analysis. Strain MMS21-HV4-11T could be assigned to the genus Reyranella of Alphaproteobacteria based on the 16S rRNA gene sequence, as the strain shared 98.74% sequence similarity with Reyranella aquatilis seoho-37T, and then 97.87% and 97.80% sequence similarity with Reyranella soli KIS14-15T and Reyranella massiliensis 521T, respectively. The decomposed N-acyl homoserine lactone was restored at high concentrations under acidic conditions, implying that lactonase and other enzyme(s) are responsible for quorum quenching. The genome analysis indicated that strain MMS21-HV4-11T had two candidate genes for lactonase and one for acylase, and expected protein structures were confirmed. In the quorum sensing inhibition assay using a plant pathogen Pectobacterium carotovorum KACC 14888, development of soft rot was significantly inhibited by strain MMS21-HV4-11T. Besides, the swarming motility by Pseudomonas aeruginosa PA14 was significantly inhibited in the presence of strain MMS21-HV4-11T. Since the isolate did not display direct antibacterial activity against either of these species, the inhibition was certainly due to quorum quenching activity. In an extended study with the type strains of all known species of Reyranella, all strains were capable of degrading N-acyl homoserine lactones (AHLs), thus showing quorum quenching potential at the genus level. This is the first study on the quorum quenching potential and enzymes responsible in Reyranella. In addition, MMS21-HV4-11T could be recognized as a new species through taxonomic characterization, for which the name Reyranella humidisoli sp. nov. is proposed (type strain = MMS21-HV4-11 T = KCTC 82780 T = LMG 32365T).


Assuntos
Filogenia , Percepção de Quorum , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Acil-Butirolactonas/metabolismo , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Rios/microbiologia , Análise de Sequência de DNA , Planococáceas/genética , Planococáceas/isolamento & purificação , Planococáceas/classificação , Planococáceas/fisiologia
10.
Microorganisms ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38792721

RESUMO

Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain Bacillus velezensis D-18 and its products, particularly in Vibrio anguillarum 507 communication and biofilm formation. Chromobacterium violaceum MK was used as a biomarker in this study, and the results confirmed that B. velezensis D-18 effectively inhibits QS. Further exploration into the QQ mechanism revealed the presence of lactonase activity by B. velezensis D-18 that degraded both long- and short-chain acyl homoserine lactones (AHLs). PCR analysis demonstrated the presence of a homologous lactonase-producing gene, ytnP, in the genome of B. velezensis D-18. The study evaluated the impact of B. velezensis D-18 on V. anguillarum 507 growth and biofilm formation. The probiotic not only controls the biofilm formation of V. anguillarum but also significantly restrains pathogen growth. Therefore, B. velezensis D-18 demonstrates substantial potential for preventing V. anguillarum diseases in aquaculture through its QQ capacity. The ability to disrupt bacterial communication and control biofilm formation positions B. velezensis D-18 as a promising eco-friendly alternative to conventional antibiotics in managing bacterial diseases in aquaculture.

11.
Front Microbiol ; 15: 1353711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784800

RESUMO

Quorum sensing (QS) is a conserved cell-cell communication mechanism widely distributed in bacteria, and is oftentimes tightly correlated with pathogen virulence. Quorum quenching enzymes, which interfere with QS through degrading the QS signaling molecules, could attenuate virulence instead of killing the pathogens, and thus are less likely to induce drug resistance. Many Gram-negative bacteria produce N-acyl homoserine lactones (AHLs) for interspecies communication. In this study, we isolated and identified a bacterial strain, Mesoflavibacter zeaxanthinifaciens XY-85, from an Onchidium sp. collected from the intertidal zone of Dapeng Reserve in Shenzhen, China, and found it had strong AHL degradative activity. Whole genome sequencing and blast analysis revealed that XY-85 harbors an AHL lactonase (designated MzmL), which is predicted to have an N-terminal signal peptide and share the "HXHXDH" motif with known AHL lactonases belonging to the Metallo-ß-lactamase superfamily. Phylogenetic studies showed MzmL was closest to marine lactonase cluster members, MomL and Aii20J, instead of the AiiA type lactonases. Ultra performance liquid chromatography-mass spectrometry analysis confirmed that MzmL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MzmL could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, and retained full bioactivity under a wide range of temperatures (28-100°C) and pHs (4-11). Furthermore, MzmL significantly reduced Pectobacterium carotovorum subsp. carotovorum virulence factor production in vitro, such as biofilm formation and plant cell wall degrading enzyme production, and inhibited soft rot development on potato slices. These results demonstrated that MzmL may be a novel type of AHL lactonase with good environmental stability, and has great potential to be developed into a novel biological control agent for bacterial disease management.

12.
Bioresour Technol ; 402: 130817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723725

RESUMO

Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.


Assuntos
Incrustação Biológica , Reatores Biológicos , Membranas Artificiais , Percepção de Quorum , Incrustação Biológica/prevenção & controle , Esgotos/microbiologia
13.
Environ Sci Pollut Res Int ; 31(22): 32126-32135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649608

RESUMO

Quorum quenching (QQ) is an efficient way to mitigate membrane biofouling in a membrane bioreactor (MBR) during wastewater treatment. A QQ bacterium, Lysinibacillus sp. A4, was isolated and used to mitigate biofouling in an MBR during the treatment of wastewater containing metals. A QQ enzyme (named AilY) was cloned from A4 and identified as a metallo-ß-lactamase-like lactonase. The QQ activity of A4 and that of Escherichia coli BL21 (DE3) overexpressing AilY could be promoted by Fe2+, Mn2+, and Zn2+ while remaining unaffected by other metals tested. The two bacteria effectively mitigated biofouling by reducing the transmembrane pressure from around 30 to 20 kPa without negative influence on the COD, NH4+-N, or total phosphorus of the effluent. The relative abundance of Lysinibacillus sp. A4 increased greatly from 0.04 to 8.29% in the MBR with metal-containing wastewater, suggesting that Lysinibacillus sp. A4 could multiply quickly and adapt to this environment. Taken together, the findings suggested that A4 could tolerate metal to a certain degree, and this property could allow A4 to adapt well to metal-containing wastewater, making it a valuable strain for mitigating biofouling in MBR during the treatment of metal-containing wastewater.


Assuntos
Incrustação Biológica , Reatores Biológicos , Percepção de Quorum , Águas Residuárias , Águas Residuárias/química , Incrustação Biológica/prevenção & controle , Eliminação de Resíduos Líquidos/métodos , Metais , Membranas Artificiais
14.
Front Microbiol ; 15: 1270174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680918

RESUMO

A large number of microbial species tend to communicate and produce biofilm which causes numerous microbial infections, antibiotic resistance, and economic problems across different industries. Therefore, advanced anti-biofilms are required with novel attributes and targets, such as quorum sensing communication system. Meanwhile, quorum sensing inhibitors as promising anti-biofilm molecules result in the inhibition of particular phenotype expression blocking of cell-to-cell communication, which would be more acceptable than conventional strategies. Many natural products are identified as anti-biofilm agents from different plants, microorganisms, and marine extracts. Marine algae are promising sources of broadly novel compounds with anti-biofilm activity. Algae extracts and their metabolites such as sulfated polysaccharides (fucoidan), carotenoids (zeaxanthin and lutein), lipid and fatty acids (γ-linolenic acid and linoleic acid), and phlorotannins can inhibit the cell attachment, reduce the cell growth, interfere in quorum sensing pathway by blocking related enzymes, and disrupt extracellular polymeric substances. In this review, the mechanisms of biofilm formation, quorum sensing pathway, and recently identified marine algae natural products as anti-biofilm agents will be discussed.

15.
Microorganisms ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674584

RESUMO

Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.

16.
Biochem Biophys Res Commun ; 711: 149912, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615572

RESUMO

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.


Assuntos
Proteínas de Bactérias , Proteínas Hemolisinas , Percepção de Quorum , Staphylococcus aureus , Staphylococcus aureus/fisiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Animais , Transativadores/metabolismo , Transativadores/genética , Hemólise , Ovinos , Regulação Bacteriana da Expressão Gênica , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Transdução de Sinais , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/metabolismo
17.
J Agric Food Chem ; 72(17): 9611-9620, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646906

RESUMO

Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.


Assuntos
Proteínas de Bactérias , Citrus , Ácidos Mandélicos , Doenças das Plantas , Sistemas de Secreção Tipo III , Xanthomonas , Xanthomonas/efeitos dos fármacos , Xanthomonas/patogenicidade , Citrus/microbiologia , Citrus/química , Doenças das Plantas/microbiologia , Virulência/efeitos dos fármacos , Ácidos Mandélicos/farmacologia , Ácidos Mandélicos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/genética , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Desenho de Fármacos
18.
Sci Total Environ ; 927: 171886, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531459

RESUMO

Activated sludge method is an effective method for the wastewater treatment and has been widely applied. Activated sludge usually exists in various forms such as activated sludge floc, biofilm and granule. Due to the different character and function for each sludge type, the role and mechanism in the wastewater treatment process are also different, but all were crucial. The quorum sensing (QS) /quorum quenching (QQ) have been demonstrated and proved to regulate the group behavior by secreting signaling molecules among microorganisms and thus affect the manifestation of sludge. However, the complex mechanisms and regulatory strategies of QS/QQ in sludge forms have not been systematically summarized. This review provided an overview on the mechanism of QS/QQ shaping sludge forms from macro to micro (Explore it through signaling molecules, extracellular polymeric substances and microorganisms). In addition, the application and challenges of QS/QQ regulating sludge forms in various wastewater treatment processes including biofilm batch reactor, granule sludge and membrane bioreactor were discussed. Finally, some suggestions for further research and development of effective and economical QS/QQ strategies are put forward.


Assuntos
Reatores Biológicos , Percepção de Quorum , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Águas Residuárias/microbiologia
19.
J Fish Dis ; 47(7): e13941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523339

RESUMO

The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.


Assuntos
Aquicultura , Doenças dos Peixes , Probióticos , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Aquicultura/métodos , Probióticos/farmacologia , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Peixes , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana
20.
Biofouling ; 40(2): 153-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450621

RESUMO

Quorum quenching (QQ) by cell entrapping beads (CEBs) is known to inhibit biofouling by its biological and physical cleaning effect. Although there are better QQ media reported, due to the ease of fabrication of QQ-CEBs, this study focused on improving the quality of CEBs by comparing two distinct bead-making methods - polyvinyl alcohol-alginate (PVA-alginate) and phase inversion - and on finding the optimum concentration of QQ bacteria in the CEBs. The evaluation of PVA-alginate bead showed better uniformity, and higher mechanical and chemical strength in comparison with the phase inversion bead. Through the operations of two control membrane bioreactors (MBRs) (no bead, vacant bead) and four QQ-MBRs with different Rhodococcus sp. BH4 concentrations (2.5-15 mg cell ml-1) in PVA-alginate CEBs, the maximum QQ effect was observed by 5 mg ml-1 BH4 concentration beads. This implies that an optimum cell concentration of QQ-CEBs is crucial to economically improve MBR performance using QQ.


Assuntos
Incrustação Biológica , Percepção de Quorum , Incrustação Biológica/prevenção & controle , Biofilmes , Membranas Artificiais , Bactérias , Alginatos , Reatores Biológicos/microbiologia , Álcool de Polivinil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...