Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1333865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352148

RESUMO

The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 µg g-1) and p-coumaric acid (3044.01 µg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 µg g-1), caffeic acid (130.13 µg g-1) and 4-hydroxy benzoic acid (465.93 µg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 µg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.

2.
Front Physiol ; 13: 980783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187760

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of death worldwide and aging is the primary risk factor for the development of CVD. The increased risk of CVD with aging is largely mediated by the development of vascular dysfunction. Excessive production of mitochondrial reactive oxygen species (mtROS) is a key mechanism of age-related vascular dysfunction. Therefore, establishing the efficacy of therapies to reduce mtROS to improve vascular function with aging is of high biomedical importance. Previously, in a small, randomized, crossover-design pilot clinical trial, our laboratory obtained initial evidence that chronic oral supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular function in healthy older adults. Here, we describe the protocol for an ongoing R01-funded phase IIa clinical trial to establish the efficacy of MitoQ as a therapy to improve vascular function in older adults (ClinicalTrials.gov Identifier: NCT04851288). Outcomes: The primary outcome of the study is nitric oxide (NO)-mediated endothelium-dependent dilation (EDD) as assessed by brachial artery flow-mediated dilation (FMDBA). Secondary outcomes include mtROS-mediated suppression of EDD, aortic stiffness as measured by carotid-femoral pulse wave velocity, carotid compliance and ß-stiffness index, and intima media thickness. Other outcomes include the assessment of endothelial mitochondrial health and oxidative stress in endothelial cells obtained by endovascular biopsy; the effect of altered circulating factors following MitoQ treatment on endothelial cell NO bioavailability and whole cell and mitochondrial reactive oxygen species production ex vivo; and circulating markers of oxidative stress, antioxidant status, and inflammation. Methods: We are conducting a randomized, placebo-controlled, double-blind, parallel group, phase IIa clinical trial in 90 (45/group) healthy older men and women 60 years of age or older. Participants complete baseline testing and are then randomized to either 3 months of oral MitoQ (20 mg; once daily) or placebo supplementation. Outcome measures are assessed at the midpoint of treatment, i.e., 6 weeks, and again at the conclusion of treatment. Discussion: This study is designed to establish the efficacy of chronic supplementation with the mitochondrial-targeted antioxidant MitoQ for improving vascular endothelial function and reducing large elastic artery stiffness in older adults, and to investigate the mechanisms by which MitoQ supplementation improves endothelial function.

3.
Eur J Pharmacol ; 935: 175321, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228744

RESUMO

Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin ß-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In ß-glucuronidase (GUSB)-proficient mice, both curcumin ß-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin ß-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation.


Assuntos
Curcumina , Pró-Fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas/genética , Curcumina/farmacologia , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Glucuronídeos/farmacologia , Glucuronídeos/uso terapêutico , NF-kappa B/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
4.
Int Immunopharmacol ; 85: 106623, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504996

RESUMO

To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.


Assuntos
Antiprotozoários/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Fitoterapia/métodos , Tubérculos/química , Inibidores de Serina Proteinase/farmacologia , Solanum tuberosum/química , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/uso terapêutico , Cricetinae , Citocinas/metabolismo , Modelos Animais de Doenças , Imunomodulação/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/ultraestrutura , Fígado/parasitologia , Camundongos Endogâmicos BALB C , Modelos Animais , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/isolamento & purificação , Inibidores de Serina Proteinase/uso terapêutico , Baço/imunologia , Baço/parasitologia , Análise de Sobrevida
5.
Front Microbiol ; 10: 1059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143173

RESUMO

As a component of the photosynthetic apparatus in cyanobacteria, the phycobilisome (PBS) plays an important role in harvesting and transferring light energy to the core photosynthetic reaction centers. The size, composition (phycobiliprotein and chromophore), and assembly of PBSs can be dynamic to cope with tuning photosynthesis and associated cellular fitness in variable light environments. Here, we explore the role of PBS-related stress responses by analyzing deletion mutants of cpcF or cpcG1 genes in Synechocystis sp. PCC 6803. The cpcF gene encodes a lyase that links the phycocyanobilin (PCB) chromophore to the alpha subunit of phycocyanin (PC), a central phycobiliprotein (PBP) in PBSs. Deletion of cpcF (i.e., ΔcpcF strain) resulted in slow growth, reduced greening, elevated reactive oxygen species (ROS) levels, together with an elevated accumulation of a stress-related Peroxiredoxin protein (Sll1621). Additionally, ΔcpcF exhibited reduced sensitivity to a photosynthesis-related stress inducer, methyl viologen (MV), which disrupts electron transfer. The cpcG1 gene encodes a linker protein that serves to connect PC to the core PBP allophycocyanin. A deletion mutant of cpcG1 (i.e.,ΔcpcG1) exhibited delayed growth, a defect in pigmentation, reduced accumulation of ROS, and insensitivity to MV treatment. By comparison, ΔcpcF and ΔcpcG1 exhibited similarity in growth, pigmentation, and stress responses; yet, these strains showed distinct phenotypes for ROS accumulation, sensitivity to MV and Sll1621 accumulation. Our data emphasize an importance of the regulation of PBS structure in ROS-mediated stress responses that impact successful growth and development in cyanobacteria.

6.
Military Medical Sciences ; (12): 427-431, 2015.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-465761

RESUMO

Objective To detect the impact of reactive oxygen species ( ROS) on mitochondrial morphology and distri-bution during mitosis.Methods A viral vector in which the fluorescence gene was specifically under the control of mito-chondrial promoter was constructed and confirmed through DNA sequencing and Western blotting.After transfecting HeLa s3 cell with packaged virus, the HeLa s3-COX4tp-EGFP cell line stably expressing the mitochondrial fluorescence signal was obtained.With immunofluorescent staining, the impact of ROS on the morphology and distribution of mitochondria dur-ing mitosis was inspected.Result The cell line constantly expressing mitochondrial fluorescence signals was successfully constructed.Meanwhile,it was found that H2 O2 treatment could significantly change the morphology and distribution of mi-tochondria during mitosis by confocal microscopy.Conclusion Our study demonstrates that ROS can affect the morphology and distribution of mitochondria during mitosis.This research help study the relationship between the mitochondrial function and the regulation of mitosis in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA