Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893416

RESUMO

Background and Objectives: A rigid, resorbable magnesium membrane was recently developed, combining the advantages of resorbable and non-resorbable membranes. Our aim was to describe the application of this membrane for guided bone regeneration (GBR). Materials and Methods: This case report described the treatment and 3D evaluation of two cases utilizing a resorbable magnesium barrier membrane. In Case #1, GBR was performed with a bilayer tunnel flap. The magnesium barrier was placed fixed subperiosteally through remote vertical incisions. In Case #2, GBR was performed using a split-thickness flap design. Volumetric and linear hard tissue alterations were assessed by 3D cone-beam computed tomography subtraction analysis, as well as with conventional intraoral radiography. Results: Case #1 showed a volumetric hard tissue gain of 0.12 cm3, whereas Case #2 presented a 0.36 cm3 hard tissue gain. No marginal peri-implant hard tissue loss could be detected at the two-year follow-up. Conclusions: The application of conventional resorbable collagen membranes would be difficult in either of the cases presented. However, the rigid structure of the magnesium membrane allowed for the limitations of conventional resorbable membranes to be overcome.


Assuntos
Aumento do Rebordo Alveolar , Magnésio , Humanos , Seguimentos , Magnésio/uso terapêutico , Estudos Retrospectivos , Aumento do Rebordo Alveolar/métodos , Membranas Artificiais
2.
Membranes (Basel) ; 12(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35448348

RESUMO

Collagen-based barrier membranes are nowadays the prevalent option for Guided Bone Regeneration (GBR) procedures. Xenogeneic collagen is highly biocompatible as it shares a similar structure to native human collagen, which prevents it from eliciting an exaggerated host immune response. Most commercially available collagen barrier membranes are porcine-derived, while bovine-derived alternatives are still rarely available. The aim of the present study was to investigate the tissue responses and the barrier functionality of a novel GBR membrane composed of bovine collagen type I (BM). Therefore, the subcutaneous implantation model in Wistar rats was performed to compare the novel medical device with two already clinically used native porcine-based barrier membranes, i.e., Jason® membrane (JM) and Bio-Gide® (BG), at 10-, 30-, 60-, and 90-days post implantationem. Histochemical and immunohistochemical stains were used for histopathological evaluation including a biocompatibility scoring according to the DIN EN ISO 10993-6 norm as well as histomorphometrical analyses of the occurrence of M1 and M2 macrophages and the transmembraneous vascularization. The bovine membrane exhibited a host tissue reaction that was comparable to both control materials, which was verified by the scoring results and the histomorphometrical macrophage measurements. Moreover, the novel membrane exhibited an integration pattern without material fragmentation up to day 60. At day 90, material fragmentation was observable that allowed for "secondary porosity" including transmembrane vascularization. The results of this study suggest that the novel bovine barrier membrane is fully biocompatible and suitable for indications that require GBR as a suitable alternative to porcine-sourced barrier membranes.

3.
J Biomater Appl ; 36(5): 930-942, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34152233

RESUMO

The fragility of silk fibroin film is a drawback to being used as a barrier membrane. Semi-resorbable barrier membranes maintain function longer than a resorbable membrane and no need to be removed. The study aimed to fabricate semi-resorbable membranes using silk fibroin with glycerol plasticizer (Group A), immobilized with fish collagen (Group B), and then characterized, in vitro biocompatibility tested, and compared with a commercial collagen membrane (Group C). Group B showed more roughness (0.2155 µm) than Group A (0.1424 µm). Group A was more hydrophilic (76.75° ± 3.07°) and more stiffness (28.93% ± 15.56%) than Group B (112.67° ± 1.94°, 42.10% ± 11.46%) and C (54.79% ± 13.44%) without significant difference. Group C had a significantly higher (p < 0.05) swelling degree and less degradation rate than others. Group A showed significantly highest (p < 0.05) cell proliferation. Group C showed more alkaline phosphatase activity than others but no significant difference in osteocalcin and Alizarin Red activity on day 21. The semi-resorbable membrane based on silk fibroin-glycerol possessed good physical and mechanical properties, and well-supported osteoblastic cell proliferation and differentiation.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Colágeno/química , Fibroínas/química , Fibroínas/farmacologia , Peixes , Glicerol/química , Glicerol/farmacologia , Seda , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Osteocalcina
4.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068426

RESUMO

Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes) were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05). Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; %) than 300k EI-BCMs at 8 weeks after implantation (p < 0.05). Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Celulose/efeitos da radiação , Regeneração Tecidual Guiada/métodos , Animais , Bactérias/química , Sobrevivência Celular , Elétrons , Masculino , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
5.
Materials (Basel) ; 10(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862689

RESUMO

Bacterial cellulose (BC) is a natural polysaccharide produced by some bacteria, and consists of a linear polymer linked by ß-(1,4) glycosidic bonds. BC has been developed as a material for tissue regeneration purposes. This study was conducted to evaluate the efficacy of resorbable electron beam irradiated BC membranes (EI-BCMs) for guided bone regeneration (GBR). The electron beam irradiation (EI) was introduced to control the biodegradability of BC for dental applications. EI-BCMs had higher porosity than collagen membranes (CMs), and had similar wet tensile strengths to CMs. NIH3T3 cell adhesion and proliferation on EI-BCMs were not significantly different from those on CMs (p > 0.05). Micro-computed tomography (µCT) and histometric analysis in peri-implant dehiscence defects of beagle dogs showed that EI-BCMs were non-significantly different from CMs in terms of new bone area (NBA; %), remaining bone substitute volume (RBA; %) and bone-to-implant contact (BIC; %) (p > 0.05). These results suggest resorbable EI-BCMs can be used as an alternative biomaterial for bone tissue regeneration.

6.
J Clin Diagn Res ; 10(9): ZC47-ZC51, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27790579

RESUMO

INTRODUCTION: Although many different types of Guided Tissue Regeneration (GTR) membranes (resorbable/non-resorbable, including titanium mesh) have been used in the field of Periodontics till now, but this is the first and only clinical study testing the effectiveness of an ultra thin pure Titanium Membrane (Ultra Ti) as a GTR membrane in infra-bony periodontal defects. AIM: To compare the efficacy of GTR in intra-bony defects with newly introduced non-resorbable barrier membrane, made of titanium called "Ultra-Ti ® GTR Membrane" versus open flap debridement. MATERIALS AND METHODS: A prospective, randomized, controlled, clinical split mouth study was designed wherein each patient received both the control and test treatment. Two similar defects were selected in each of the 12 patients and were randomly assigned to one of the two treatments. Both the surgeries consisted of identical procedures except for the omission of the barrier membrane in the control sites. Full mouth Plaque Index (PI), Gingival Index (GI), Pocket Probing Depth (PPD) and Relative Attachment Level (RAL) were recorded before surgery and after 6 months and 9 months along with hard tissue measurements at the time of surgery and then at re-entry after 9 months. Radiographs were also taken before surgery and 9 months post operatively. Student's paired t-test and unpaired t-test (SPSS software version 9) were used to analyze the results. RESULTS: Nine months after treatment, the test defects gained 4.375 ± 1.189mm of RAL, while the control defects yielded a significantly lower RAL gain of 3.417 ± 0.996mm. Pocket reduction was also significantly higher in the test group (4.917 ± 0.996mm) when compared with the controls (3.83 ± 0.718mm). There was a significant bone fill (54.69% of defect fill) obtained in the test site, unlike the control site (8.91%). CONCLUSION: The present study demonstrated that GTR with "Ultra-Ti® GTR Membrane" resulted in a significant added benefit in comparison with open flap debridement.

7.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-191906

RESUMO

INTRODUCTION: Guided bone regeneration (GBR) is a common procedure for the treatment of bone defects and bone augmentation. The non-resorbable barriers are well-documented barriers for GBR because of their stability and malleability. However, few GBR studies have focused on the different types of non-resorbable barriers. Therefore, this study examined the clinical results of different non-resorbable barriers for GBR; expanded polytetrafluoroethylene (e-PTFE) (TR-Gore Tex, Flagstaff, AZ, USA), and high-density polytetrafluoroethylene (d-PTFE) (Cytoplast membrane, Oraltronics, Bremen, Germany). MATERIALS AND METHODS: The analysis was performed on patients treated with GBR and implant placement from January 2007 to October 2007 in the department of the Seoul National University Bundang Hospital. The patients were divided into two groups based on the type of non-resorbable barrier used, and the amount of bone regeneration, marginal bone resorption after prosthetics, implant survival rate and surgical complication in both groups were evaluated. RESULTS: The implants in both groups showed high survival rates, and the implant-supported prostheses functioned stably during the follow-up period. During the second surgery of the implant, all horizontal defects were filled with new bone, and there was no significant difference in the amount of vertical bone defect. CONCLUSION: In bone defect areas, GBR with non-resorbable barriers can produce favorable results with adequate postoperative management. There was no significant difference in bone regeneration between e-PTFE and d-PTFE.


Assuntos
Humanos , Regeneração Óssea , Reabsorção Óssea , Seguimentos , Membranas , Politetrafluoretileno , Próteses e Implantes , Taxa de Sobrevida
8.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-121086

RESUMO

The ultimate goal of periodontal disease therapy is to promote the regeneration of lost periodontal tissue, there has been many attempts to develop a method to achieve this goal, but none of them was completely successful. This study was designed to compare the effects of treatment using resorbable barrier membrane(Biomesh?) in combination with autogenous bone graft material with control treated by only modified Widman flap. 22 infrabony defecs from 10 patients with chronic periodontitis were used for this study, 10 sites of them were treated with resorbable barrier membrane and autogenous bone graft material as experimental group and 12 site were treated by only modified Widman flap as control group. Clinical parameters including probing depth, gingival recession, bone probing depth and loss of attachment were recorded at 6-8 months later, and the significance of the changes was statistically analyzed. The results are as follows : 1. Probing depth of the two group was reduced with statistically significance(P<0.05), but this changes were not different between the two experiment, control group with statistically significance. 2. Gingival recession showed statistically significant increase in control group(P<0.05), but not in experimental group, and initial values of the two group were in statistically significant difference(P<0.05). 3. Bone probing depth showed statistically significant decrease in experimental group(P<0.05), but not in control group, and this changes were different between the two experiment, control group with statistically significance(P<0.05). 4. Loss of attachment showed statistically significant decrease in experimental group(P<0.05), but not in control group, and this changes were different between the two experiment, control group with statistically significance(P<0.05) On the basis of these results, treatment using resorbable barrier membrane in combination with autogenous bone graft material improve the probing depth, bone probing depth and loss of attachment in infrabony defects.


Assuntos
Humanos , Periodontite Crônica , Retração Gengival , Membranas , Doenças Periodontais , Regeneração , Transplantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...