Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755053

RESUMO

Beneficial associations are very important for plants and soil-dwelling microorganisms in different ecological niches, where communication by chemical signals is relevant. Among the chemical signals, the release of phytohormones by plants is important to establish beneficial associations with fungi, and a recently described association is that of the entomopathogenic ascomycete fungus Metarhizium with plants. Here, we evaluated the effect of four different phytohormones, synthetic strigolactone (GR24), sorgolactone (SorL), 3-indolacetic acid (IAA) and gibberellic acid (GA3), on the fungus Metarhizium guizhouense strain HA11-2, where the germination rate and hyphal elongation were determined at three different times. All phytohormones had a positive effect on germination, with GA3 showing the greatest effect, and for hyphal length, on average, the group treated with synthetic strigolactone GR24 showed greater average hyphal length at 10 h of induction. This work expands the knowledge of the effect of phytohormones on the fungus M. guizhouense, as possible chemical signals for the rapid establishment of the fungus-plant association.

2.
J Basic Microbiol ; 63(11): 1242-1253, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507826

RESUMO

Invasive alien plant species (IAPS) have the ability to change the biochemical properties and the arbuscular mycorrhizal fungal (AMF) community structure in their rhizosphere. Organic acids, microbial activity, and AMF play a key role in the invader's spread and also has interactions with the soil chemical factors. Our aim here was to assess the rhizosphere's biochemical factors, AMF community composition, and soil chemical properties associated with Cryptostegia madagascariensis (IAPS) and Mimosa tenuiflora (endemic plant species) from the Brazilian Seasonal Dry Forest. The highest values of total glomalin (5.87 mg g-1 soil), root colonization (54.5%), oxalic and malic acids (84.21 and 3.01 µmol g-1 , respectively), microbial biomass C (mg kg-1 ), Na+ (0.080 cmolc kg-1 ), Ca2+ (7.04 cmolc kg-1 ), and soil organic carbon (4.59 g kg-1 ) were found in the rhizosphere of C. madagascariensis. We found dissimilarities on AMF community structure considering the studied plant species: (i) Racocetra coralloidea, Dentiscutata heterogama, Dentiscutata cerradensis, Gigaspora decipiens, and AMF's richness were highly correlated with the rhizosphere of M. tenuiflora; and (ii). The rhizosphere of C. madagascariensis was highly correlated with the abundance of Claroideoglomus etunicatum, Rhizoglomus aggregatum, Funneliformis mosseae, and Funneliformis geosporum. The results of our study highlight the importance of considering C. madagascariensis as potential hosts for AMF species from Glomerales, and a potential plant species that increase the bioavailability of exchangeable Na and Ca at semi-arid conditions.


Assuntos
Micobioma , Micorrizas , Raízes de Plantas/microbiologia , Brasil , Estações do Ano , Carbono , Solo/química , Plantas , Florestas , Microbiologia do Solo
3.
J Exp Bot ; 74(6): 2016-2028, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575905

RESUMO

Beneficial interactions between plant roots and Trichoderma species lead to both local and systemic enhancements of the plant immune system through a mechanism known as priming of defenses. Previously, we have reported a number of genes and proteins that are differentially regulated in distant tissues of maize plants following inoculation with Trichoderma atroviride. To further investigate the mechanisms involved in the systemic activation of plant responses, here we have further evaluated the regulatory aspects of a selected group of genes when priming is triggered in maize plants. Time-course experiments from the beginning of the interaction between T. atroviride and maize roots followed by leaf infection with Colletotrichum graminicola allowed us to identify a gene set regulated by priming in the leaf tissue. In the same experiment, phytohormone measurements revealed a decrease in jasmonic acid concentration while salicylic acid increased at 2 d and 6 d post-inoculation. In addition, chromatin structure and modification assays showed that chromatin was more open in the primed state compared with unprimed control conditions, and this allowed for quicker gene activation in response to pathogen attack. Overall, the results allowed us to gain insights on the interplay between the phytohormones and epigenetic regulatory events in the systemic and long-lasting regulation of maize plant defenses following Trichoderma inoculation.


Assuntos
Trichoderma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo
4.
Acta biol. colomb ; 27(3): 439-448, Sep.-Dec. 2022. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1573585

RESUMO

RESUMEN Los robledales en Colombia están dominados por la especie Quercus humboldtii Bonpl. Esta especie se encuentra en categoría de vulnerable debido a la deforestación para generar cultivos, zonas ganaderas y plantaciones de especies exóticas, ocasionando la formación de bordes por el deterioro del ecosistema. Estos bosques establecen asociaciones simbióticas con especies de hongos ectomicorrícicos, permitiendo el intercambio de nutrientes entre las hifas de los hongos y las raíces de las plantas. Este estudio analiza el efecto de borde en un área al interior (BNI-C) y al borde de un bosque de roble no intervenido (BNI-B), además de dos bordes de bosque con intervención antropogénica, una en contacto con plantación de Eucalyptus sp. (BE) y otro con ganadería (BG). Se estableció el borde de bosque mediante variables ambientales (temperatura ambiente, luminosidad temperatura y humedad del suelo). Se colectaron raicillas de siete árboles tanto de interior como de borde para medir la colonización y caracterizar morfológicamente las ectomicorrizas asociadas a las raíces de roble. Se evidenció el efecto de borde en el grado de colonización ectomicorrícica en las raíces de Q. humboldtii con porcentajes de 18 a 30 % en BNI, 15 % en BE y 47 % en BG. Los géneros ectomicorrícicos Cenococcum sp. y Lactarius sp. presentaron la mayor abundancia en los tres bosques, variando considerablemente cerca a los bordes en BG y BE. Se evidenciaron cambios de porcentaje de colonización y diversidad de morfotipos de ectomicorrizas en los bordes de los dos bosques intervenidos .


ABSTRACT The oak forests in Colombia are dominated by the species Quercus humboldtii Bonpl. which is in the vulnerable category due to deforestation to generate crops, livestock areas and plantations of exotic species, causing the formation of edges due to the deterioration of the ecosystem. These forests establish symbiotic associations with species of ectomycorrhizal fungi, allowing the exchange of nutrients and water between fungal hyphae and plant roots. This study analyzes the edge effect in the interior (BNI-C) and at the edge of an undisturbed oak forest (BNI-B), in addition to two forest edges with anthropogenic intervention, one in contact with a plantation of Eucalyptus sp. (BE) and another with cattle ranching (BG). The forest edge was established by measuring environmental variables (ambient temperature, luminosity, temperature, and soil humidity). Oak roots were collected from seven trees at the interior and edge of each forest and the quantification of colonization and morphological characterization of ectomycorrhizae was made. The edge effect was evidenced in the degree of ectomycorrhizal colonization in the roots of Q. humboldtii with percentages of 18 to 30 % in BNI, 15 % in BE and 47 % in BG. The ectomycorrhizal genera Cenococcum sp. and Lactarius sp. showed the highest abundance in the three forests, varying considerably near the edges in BG and BE. Changes in the percentage of colonization and morphotype diversity of ectomycorrhizae were evidenced at the forest edge in contact with the two disturbed areas.

5.
Appl Microbiol Biotechnol ; 106(23): 7891-7903, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334127

RESUMO

Bacteria of the genus Azospirillum include several plant associated bacteria which often promote the growth of their host plants. Although the host range of Azospirillum brasilense Sp7 is much wider than its close relative Azospirillum lipoferum 4B, it lacks the ability to efficiently utilize D-glucose for its growth. By comparing the genomes of both the species, the genes of A. lipoferum 4B responsible for conferring D-glucose utilization ability in A. brasilese Sp7 were identified by cloning individual or a combination of genes in a broad host range expression vector, mobilizing them in A. brasilense Sp7 and examining the ability of exconjugants to use D-glucose as sole carbon source for growth. These genes also included the homologs of genes involved in N-acetyl glucosamine utilization in Pseudomonas aeruginosa PAO1. A transcriptional fusion of the 5 genes encoding glucose-6-phosphate dehydrogenase and 4 components of glucose phosphotransferase system were able to improve D-glucose utilization ability in A. brasilense Sp7. The A. brasilense Sp7 strain engineered with D-glucose utilization ability showed significantly improved root colonization of rice seedling. The improvement in the ability of A. brasilense Sp7 to colonize rice roots is expected to bring benefits to rice by promoting its growth. KEY POINTS: • Genes required for glucose utilization in Azospirillum lipoferum were identified. • A gene cassette encoding glucose utilization was constructed. • Transfer of gene cassette in A. brasilense improves glucose utilization and rice root colonization..


Assuntos
Azospirillum brasilense , Azospirillum , Oryza , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Glucose/metabolismo
6.
Arch Microbiol ; 204(7): 373, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672591

RESUMO

Herbaspirillum seropedicae is a plant growth-promoting bacteria isolated from diverse plant species. In this work, the main objective was to investigate the efficiency of H. seropedicae strain SmR1 in colonizing and increasing maize growth (DKB 390 variety) in the early stages of development under greenhouse conditions. Inoculation with H. seropedicae resulted in 19.43 % (regarding High and Low N controls) and 10.51% (regarding Low N control) in mean of increase of root biomass, for 1st and 2nd greenhouse experiments, respectively, mainly in the initial stages of plant development, at 21 days after emergence (DAE). Quantification of H. seropedicae in roots and leaves was performed by quantitative PCR. H. seropedicae was detected only in maize inoculated roots by qPCR, and a slight decrease in DNA copy number g-1 of fresh root weight was observed from 7 to 21 DAE, suggesting that there was initial effective colonization on maize plants. H. seropedicae strain SmR1 efficiently increased maize root biomass exhibiting its potential to be used as inoculant in agricultures systems.


Assuntos
Herbaspirillum , Zea mays , Biomassa , Herbaspirillum/genética , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Zea mays/microbiologia
7.
rev. udca actual. divulg. cient ; 25(1): e2098, ene.-jun. 2022. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1395184

RESUMO

RESUMEN Masdevallia coccinea es una orquídea llamativa, endémica de Colombia, empleada en la generación de híbridos ornamentales con más de una década, clasificada como una especie en peligro de extinción. Entre las técnicas usadas para la propagación in vitro y ex situ de especies de la familia Orchidaceae, se estudia la simbiosis micorrízica, debido a que esta familia micoheterótrofa depende de una correlación con estos hongos para subsistir en las primeras etapas de desarrollo en estado silvestre. Con el objetivo de caracterizar e identificar los hongos asociados a las raíces de M. coccinea, se realizó un estudio histológico en raíces y, a partir de micropreparados, se caracterizó morfológicamente micro, macroscópica y molecularmente diez aislamientos. Se identificó a M. coccinea como una orquídea que presenta diferentes patrones de colonización micorrízicos y con posibles efectos endófitos de los géneros Aspergillus, Scopulariopsis, Trichoderma, Ilyonectria y del orden Xylariales en condiciones ex situ.


ABSTRACT Masdevallia coccinea is a striking orchid, endemic to Colombia, used in the generation of ornamental hybrids, with more than a decade classified as an endangered species. Among the techniques used for in vitro and ex situ propagation of species of the Orchidaceae family, mycorrhizal symbiosis is studied, because this mycoheterotrophic family depends on a correlation with these fungi to survive in the early stages of development in the wild. In order to characterize and identify the fungi associated with the roots of M. coccinea, a histological study was carried out on roots and 10 isolates were morphologically, macroscopically and molecularly characterized from micropreparations. M. coccinea is identified as an orchid with different mycorrhizal colonization patterns and with possible endophytic effects of the genera Aspergillus, Scopulariopsis, Trichoderma, Ilyonectria and the order Xylariales under ex situ conditions.

8.
PeerJ ; 10: e12924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341038

RESUMO

Perennial ryegrass (Lolium perenne L.) possesses a high level of nutritional quality and is widely used as a forage species to establish permanent pastures in southern Chile. However, the productivity of most such pastures is limited by various environmental agents, such as insect pests and drought. In this context, our work stresses the need for elucidating the ability of fungal endophytes to establish interactions with plants, and to understand how these processes contribute to plant performance and fitness. Therefore, we evaluated the colonization and impact of two native strains of the endophytic insect-pathogenic fungus (EIPF) group isolated from permanent ryegrass pastures in southern Chile. Roots and seeds of ryegrass and scarabaeid larvae were collected from nine different ryegrass pastures in the Los Ríos region of southern Chile to specifically isolate EIPFs belonging to the genera Beauveria and Metarhizium. Fungal isolations were made on 2% water agar with antibiotics, and strains were identified by analyzing the entire internal transcribed spacer (ITS) 1-5.8S-ITS2 ribosomal DNA region. Four strains of Beauveria and 33 strains of Metarhizium were isolated only in scarabaeid larvae from ryegrass pastures across four sites. Experimental mini-pastures that were either not inoculated (control) or co-inoculated with conidia of the strains Beauveria vermiconia NRRL B-67993 (P55_1) and Metarhizium aff. lepidiotae NRRL B-67994 (M25_2) under two soil humidity levels were used. Ryegrass plants were randomly collected from the mini-pastures to characterize EIPF colonization in the roots by real-time PCR and fluorescence microscopy. Aboveground biomass was measured to analyze the putative impact of colonization on the mini-pastures' aboveground phenotypic traits with R software using a linear mixed-effects model and the ANOVA statistical test. Seasonal variation in the relative abundance of EIPFs was observed, which was similar between both strains from autumn to spring, but different in summer. In summer, the relative abundance of both EIPFs decreased under normal moisture conditions, but it did not differ significantly under water stress. The aboveground biomass of ryegrass also increased from autumn to spring and decreased in summer in both the inoculated and control mini-pastures. Although differences were observed between moisture levels, they were not significant between the control and inoculated mini-pastures, except in July (fresh weight and leaf area) and October (dry weight). Our findings indicate that native strains of B. vermiconia NRRL B-67993 (P55_1) and M. aff. lepidiotae NRRL B-67994 (M25_2) colonize and co-exist in the roots of ryegrass, and these had little or no effect on the mini-pastures' aboveground biomass; however, they could have other functions, such as protection against root herbivory by insect pests.


Assuntos
Beauveria , Lolium , Metarhizium , Animais , Beauveria/fisiologia , Metarhizium/genética , Lolium/microbiologia , Insetos/microbiologia , Plantas/microbiologia , Larva/microbiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-35324421

RESUMO

Strain UY79T was isolated from a root nodule of Arachis villosa, collected at the Esteros de Farrapos National Park, Río Negro, Uruguay. Cells were non-motile Gram-variable rods with central to subterminal oval to ellipsoidal endospores that swell the sporangia. Growth was observed in the range of 15-42 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, pH 7.0-8.0) and with up to 3 % (w/v) NaCl (optimum, 1-2 %). Strain UY79T was facultative anaerobic, catalase-positive and oxidase-negative. According to the results of 16S rRNA gene sequence analysis, UY79T belongs to the genus Paenibacillus and is closely related to P. ottowii MS2379T, P. peoriae BD-57T, P. polymyxa ATCC 842T and P. brasilensis PB172T, exhibiting 99.4, 99.0, 99.0 and 98.9% sequence identity, respectively. Average nucleotide identity and digital DNA-DNA hybridization values with the most closely related type strains were 74.3-88.6% and 38.2-48.7 %, respectively. Major fatty acids (>10 %) were anteiso-C15:0, iso-C15:0, and C16 : 0. Menaquinones MK-7 and MK-6 were the only isoprenoid quinones detected. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid. Spermidine was the predominant polyamine. The DNA G+C content based on the draft genome sequence was 46.34 mol%. Based on the current polyphasic study, UY79T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus farraposensis sp. nov. is proposed. The type strain is UY79T (=CCM 9147T=CGMCC 1.19038T).


Assuntos
Paenibacillus , Arachis , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Braz. arch. biol. technol ; Braz. arch. biol. technol;65: e22210304, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364435

RESUMO

Abstract The effect of different fungicides on mycorrhizal fungi should be investigated in different plants and environmental conditions. Thus, the purpose of this study was to appraise the effect of simultaneous fungicides application (including benomyl, rovral TS, mancozeb, and tilt) on the efficiency of Rhizophagus irregularis in cultivations of maize and wheat. This study was conducted in two separate experiments in the laboratory and greenhouse. The results of the laboratory stage showed that the use of all four fungicides significantly reduced the spore number compared to the conditions of non-use of the fungicide, although only rovral TS and mancozeb led to a significant reduction in root colonization percentage of R. irregularis. In the greenhouse, the benomyl significantly increased root dry weight in maize although tilt significantly reduced root colonization of maize with R. irregularis. The tilt and rovral TS had a positive effect and benomyl had a negative effect on wheat growth traits, but the root colonization of wheat with R. irregularis was not affected by fungicides. Generally, benomyl (2 g L-1) in maize and tilt (2 mL L-1) in wheat and rovral TS in both plants could be recommended with the combined application of R. irregularis inoculants. Therefore, depending on the type of fungicide and the host plant, the effect of the fungicide on colonization and association of mycorrhiza varies.

11.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33571355

RESUMO

Seed germination events modulate microbial community composition, which ultimately influences seed-to-seedling growth performance. Here, we evaluate the germinated maize (variety SHS 5050) root bacterial community of disinfected seed (DS) and non-disinfected seed (NDS). Using a gnotobiotic system, sodium hypochlorite (1.25%; 30 min)-treated seeds showed a reduction of bacterial population size and an apparent increase of bacterial community diversity associated with a significant selective reduction of Burkholderia-related sequences. The shift in the bacterial community composition in DS negatively affects germination speed, seedling growth and reserve mobilization rates compared with NDS. A synthetic bacterial community (syncom) formed by 12 isolates (9 Burkholderia spp., 2 Bacillus spp., and 1 Staphylococcus sp.) obtained from natural microbiota maize seeds herein was capable of recovering germination and seedling growth when reintroduced in DS. Overall, results showed that changes in bacterial community composition and selective reduction of Burkholderia-related members' dominance interfere with germination events and the initial growth of the maize. By cultivation-dependent and -independent approaches, we deciphered seed-maize microbiome structure, bacterial niches location and bacterial taxa with relevant roles in seedling growth performance. A causal relationship between seed microbial community succession and germination performance opens opportunities in seed technologies to build-up microbial communities to boost plant growth and health.


Assuntos
Germinação , Microbiota , Plântula , Sementes , Zea mays
12.
Arch Microbiol ; 202(7): 1653-1662, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32274559

RESUMO

Azospirillum brasilense is a plant growth promoting bacteria used as an inoculant in diverse crops. Accurate analytical methods are required to enumerate viable cells in inoculant formulations or in planta. We developed a quantitative polymerase chain reaction (qPCR) assay associated to propidium monoazide (PMA) to evaluate the cell viability of A. brasilense in inoculant and in maize roots. A. brasilense was grown in culture medium and was exposed to 50 â„ƒ. Maize roots were grown in vitro and harvested 7 days after inoculation. Quantification was performed by qPCR, PMA-qPCR, and plate counting. Standard curves efficiency values ranged from 85 to 99%. The limit of detection was 104 CFU per gram of fresh root. Enumeration obtained in maize roots by qPCR where higher than enumeration by PMA-qPCR and by plate counting. PMA-qPCR assay was efficient in quantifying inoculant viable cells and provides reliable results in a quickly and accurately way compared to culture-dependent methods.


Assuntos
Azidas/metabolismo , Azospirillum brasilense/fisiologia , Microbiologia Industrial/métodos , Viabilidade Microbiana , Raízes de Plantas/microbiologia , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real , Propídio/metabolismo , Zea mays/microbiologia
13.
Front Microbiol ; 11: 618415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519779

RESUMO

The main objective of this study was to evaluate Bacillus velezensis strain CMRP 4490 regarding its ability to inhibit soil-borne plant pathogens and to increase plant growth. The study included evaluation of in vitro antifungal control, sequencing the bacterial genome, mining genes responsible for the synthesis of secondary metabolites, root colonization ability, and greenhouse studies for the assessment of plant growth-promoting ability. The strain was obtained from soil samples in the north of Paraná in Brazil and was classified as a B. velezensis, which is considered a promising biological control agent. In vitro assay showed that B. velezensis CMRP 4490 presented antagonistic activity against Sclerotinia sclerotiorum, Macrophomina phaseolina, Botrytis cinerea, and Rhizoctonia solani with a mycelial growth inhibition of approximately 60%, without any significant difference among them. To well understand this strain and to validate its effect on growth-promoting rhizobacteria, it was decided to explore its genetic content through genome sequencing, in vitro, and greenhouse studies. The genome of CMRP 4490 was estimated at 3,996,396 bp with a GC content of 46.4% and presents 4,042 coding DNA sequences. Biosynthetic gene clusters related to the synthesis of molecules with antifungal activity were found in the genome. Genes linked to the regulation/formation of biofilms, motility, and important properties for rhizospheric colonization were also found in the genome. Application of CMRP 4490 as a coating film on soybean increased from 55.5 to 64% on germination rates when compared to the control; no differences were observed among treatments for the maize germination. The results indicated that B. velezensis CMRP 4490 could be a potential biocontrol agent with plant growth-promoting ability.

14.
Microbiol Res ; 217: 69-80, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30384910

RESUMO

Bacillus subtilis EA-CB0575 is a plant growth-promoting bacterium (PGPB) associated with banana and tomato crops. Root colonization is an important trait for PGPB microorganisms and potentiates the bacterial effect related to the mechanisms of plant growth promotion. Therefore, detection of bacterial colonization of roots in different culture systems is important in the study of plant-microorganism interactions. In this study, fluorescent in situ hybridization (FISH) and catalyzed reporter deposition-FISH (CARD-FISH) were evaluated to determine the colonization ability of B. subtilis EA-CB0575 on banana and tomato roots planted on solid and liquid Murashige and Skoog medium (MS(S) and MS(L), respectively) and in soil for tomato plants. Results showed B. subtilis colonization 0-30 days post inoculation for banana and tomato plants in different culture systems with differential distribution of bacterial cells along tomato and banana roots. FISH and CARD-FISH methodologies were both successful in detecting B. subtilis colonies, but CARD-FISH proved to be superior due to its enhanced fluorescence signal. The presence of bacteria correlated with the promotion of plant growth in both plant species, providing clues to relate rhizospheric colonization with improvement in plant growth. FISH and CARD-FISH analysis results suggested the presence of native microbiota on the roots of in vitro banana plants, but not on those of tomato plants.


Assuntos
Inoculantes Agrícolas , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Musa/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Solanum lycopersicum/microbiologia , Hibridização in Situ Fluorescente , Solanum lycopersicum/crescimento & desenvolvimento , Microbiota , Microscopia Eletrônica de Varredura , Musa/crescimento & desenvolvimento , Rizosfera , Sementes/microbiologia , Solo , Microbiologia do Solo
15.
Front Microbiol ; 9: 1794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140262

RESUMO

Cereals such as maize, rice, wheat and sorghum are the most important crops for human nutrition. Like other plants, cereals associate with diverse bacteria (including nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical fertilizers are used in cereals, it has always been desirable to promote biological nitrogen fixation in such crops. The quest for nitrogen fixation in cereals started long ago with the isolation of nitrogen-fixing bacteria from different plants. The sources of diazotrophs in cereals may be seeds, soils, and even irrigation water and diazotrophs have been found on roots or as endophytes. Recently, culture-independent molecular approaches have revealed that some rhizobia are found in cereal plants and that bacterial nitrogenase genes are expressed in plants. Since the levels of nitrogen-fixation attained with nitrogen-fixing bacteria in cereals are not high enough to support the plant's needs and never as good as those obtained with chemical fertilizers or with rhizobium in symbiosis with legumes, it has been the aim of different studies to increase nitrogen-fixation in cereals. In many cases, these efforts have not been successful. However, new diazotroph mutants with enhanced capabilities to excrete ammonium are being successfully used to promote plant growth as commensal bacteria. In addition, there are ambitious projects supported by different funding agencies that are trying to genetically modify maize and other cereals to enhance diazotroph colonization or to fix nitrogen or to form nodules with nitrogen-fixing symbiotic rhizobia.

16.
An. acad. bras. ciênc ; 90(1): 357-371, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886906

RESUMO

ABSTRACT Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.


Assuntos
Solo/química , Microbiologia do Solo , Simbiose/fisiologia , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Vigna/crescimento & desenvolvimento , Fósforo/análise , Fatores de Tempo , Brasil , Raízes de Plantas/microbiologia , Biodiversidade , Vigna/microbiologia , Nitrogênio/análise
17.
Sci. agric ; 70(3)2013.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497340

RESUMO

Rooted leafy cuttings of three Greek olive (Olea europaea L.) cultivars (Koroneiki, Kothreiki and Chondrolia Chalkidikis) were grown for six months in three soil types, in an experimental greenhouse, in order to investigate: i) if their root system was colonized by arbuscular mycorrhiza fungus (AMF) genus and, ii) if genotypic differences concerning growth and mineral nutrition of olive plants existed. Gigaspora sp. colonized the root system of the three cultivars studied, while Glomus sp. colonized only the root system of 'Koroneiki'. Furthermore, in most cases root colonization by AMF differed among cultivars and soil types. The maximum root colonization, in all soils, was found in 'Chondrolia Chalkidikis'. In the three soils studied, the ratio shoot dry weight (SDW)/ root dry weight (RDW) was higher in 'Chondrolia Chalkidikis' than in the other two cultivars. Furthermore, root system morphology of the three olive cultivars was completely different, irrespectively of soil type. Leaf Mn, Fe, Zn, Ca, Mg, K and P concentrations, as well as total per plant nutrient content and nutrient use efficiency, differed among cultivars under the same soil conditions. These differences concerning root morphology, SDW/RDW, as well as nutrient uptake and use efficiency, could be possibly ascribed to the differential AMF colonization by Glomus sp. and Gigaspora sp.

18.
Semina ciênc. agrar ; 34(6): 3529-3542, 2013.
Artigo em Português | LILACS-Express | VETINDEX | ID: biblio-1499466

RESUMO

Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs) type and another with ectomycorrhizal fungi (fECTOs). The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida) or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64ITA6; UFSC Pt187 and O 40ORS 7870). The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius) provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.


Acacia mangium forma dois tipos de simbiose micorrízica, uma com fungos micorrízicos arbusculares (FMAs) e outra com fungos ectomicorrízicos (fECTOs). O presente trabalho teve o objetivo de selecionar diferentes espécies de FMAs e isolados de fECTOs para simbioses eficientes com A. mangium, que proporcionem mudas bem micorrizadas, noduladas e desenvolvidas. Experimentos foram instalados em casa de vegetação na Embrapa Agrobiologia, sendo um para a seleção de FMAs e outro para fECTOs, utilizando delineamento de blocos casualizados, com 5 repetições. Tratamentos foram espécies de FMAs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei e Scutellospora pellucida) ou isolados de fECTOs (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64ITA6; UFSC Pt187 e O 40ORS 7870). As espécies de FMAs que promoveram maior crescimento vegetativo, colonização micorrízica e apresentaram simbiose mais eficiente foram S. calospora, S. heterogama, S. gilmorei e A. morrowiae. Os fECTOs não demonstraram eficiência na promoção do crescimento, mas o isolado O64ITA6 (Pisolithus tinctorius) proporcionou maior colonização micorrízica. Mudas de A. mangium são muito responsivas a inoculação de FMAs e dependem de elevada colonização micorrízica, entre 40 e 80%, para ob

19.
Sci. agric. ; 70(3)2013.
Artigo em Inglês | VETINDEX | ID: vti-440714

RESUMO

Rooted leafy cuttings of three Greek olive (Olea europaea L.) cultivars (Koroneiki, Kothreiki and Chondrolia Chalkidikis) were grown for six months in three soil types, in an experimental greenhouse, in order to investigate: i) if their root system was colonized by arbuscular mycorrhiza fungus (AMF) genus and, ii) if genotypic differences concerning growth and mineral nutrition of olive plants existed. Gigaspora sp. colonized the root system of the three cultivars studied, while Glomus sp. colonized only the root system of 'Koroneiki'. Furthermore, in most cases root colonization by AMF differed among cultivars and soil types. The maximum root colonization, in all soils, was found in 'Chondrolia Chalkidikis'. In the three soils studied, the ratio shoot dry weight (SDW)/ root dry weight (RDW) was higher in 'Chondrolia Chalkidikis' than in the other two cultivars. Furthermore, root system morphology of the three olive cultivars was completely different, irrespectively of soil type. Leaf Mn, Fe, Zn, Ca, Mg, K and P concentrations, as well as total per plant nutrient content and nutrient use efficiency, differed among cultivars under the same soil conditions. These differences concerning root morphology, SDW/RDW, as well as nutrient uptake and use efficiency, could be possibly ascribed to the differential AMF colonization by Glomus sp. and Gigaspora sp.

20.
Semina Ci. agr. ; 34(6): 3529-3542, 2013.
Artigo em Português | VETINDEX | ID: vti-473079

RESUMO

Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs) type and another with ectomycorrhizal fungi (fECTOs). The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida) or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64ITA6; UFSC Pt187 and O 40ORS 7870). The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius) provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.


Acacia mangium forma dois tipos de simbiose micorrízica, uma com fungos micorrízicos arbusculares (FMAs) e outra com fungos ectomicorrízicos (fECTOs). O presente trabalho teve o objetivo de selecionar diferentes espécies de FMAs e isolados de fECTOs para simbioses eficientes com A. mangium, que proporcionem mudas bem micorrizadas, noduladas e desenvolvidas. Experimentos foram instalados em casa de vegetação na Embrapa Agrobiologia, sendo um para a seleção de FMAs e outro para fECTOs, utilizando delineamento de blocos casualizados, com 5 repetições. Tratamentos foram espécies de FMAs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei e Scutellospora pellucida) ou isolados de fECTOs (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64ITA6; UFSC Pt187 e O 40ORS 7870). As espécies de FMAs que promoveram maior crescimento vegetativo, colonização micorrízica e apresentaram simbiose mais eficiente foram S. calospora, S. heterogama, S. gilmorei e A. morrowiae. Os fECTOs não demonstraram eficiência na promoção do crescimento, mas o isolado O64ITA6 (Pisolithus tinctorius) proporcionou maior colonização micorrízica. Mudas de A. mangium são muito responsivas a inoculação de FMAs e dependem de elevada colonização micorrízica, entre 40 e 80%, para ob

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA