Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Pest Manag Sci ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943354

RESUMO

BACKGROUND: Root-knot nematodes (RKNs), Meloidogyne spp., are one of the most destructive polyphagous plant-parasitic nematodes. They pose a serious threat to global food security and are difficult to control. Entomopathogenic nematodes (EPNs) show promise in controlling RKNs. However, it remains unclear whether the volatile organic compounds (VOCs) emitted from EPN-infected cadavers can control RKNs. RESULTS: We investigated the fumigation activity of VOCs released from cadavers infected by five different species of EPNs on RKNs in Petri dishes, and found that VOCs released from Steinernema feltiae (SN strain) and S. carpocapsae (All strain) infected cadavers had a significant lethal effect on second-stage juveniles (J2s) of Meloidogyne incognita. The VOCs released from the cadavers infected with S. feltiae were analyzed using SPME-GC/MS. Dimethyl disulfide (DMDS), tetradecane, pentadecane, and butylated hydroxytoluene (BHT), were selected for a validation experiment with pure compounds. The DMDS compound had significant nematicidal activity and repelled J2s. DMDS also inhibited egg hatching and the invasion of tomato roots by J2s. In a pot experiment, the addition of S. feltiae-infected cadavers and cadavers wrapped with a 400-mesh nylon net also significantly reduced the population of RKNs in tomato roots after 7 days. The number of root knots and eggs was reduced by 58% and 74.34%, respectively, compared to the control. CONCLUSION: These results suggested that the VOCs emitted by the EPN-infected cadavers affected various developmental stages of M. incognita and thus have the potential to be used in controlling RKNs through multiple methods. © 2024 Society of Chemical Industry.

2.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38916562

RESUMO

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Assuntos
Antinematódeos , Simulação de Acoplamento Molecular , Pistacia , Doenças das Plantas , Raízes de Plantas , Tylenchoidea , Animais , Tylenchoidea/efeitos dos fármacos , Antinematódeos/farmacologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Pistacia/química
3.
Planta ; 260(2): 36, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922545

RESUMO

MAIN CONCLUSION: Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.


Assuntos
Agricultura , Doenças das Plantas , Raízes de Plantas , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Agricultura/métodos , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Interações Hospedeiro-Parasita , Resistência à Doença , Produtos Agrícolas/parasitologia , Antinematódeos/farmacologia
4.
BMC Plant Biol ; 24(1): 469, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811862

RESUMO

BACKGROUND: Green nanoparticles are considered to be an effective strategy for improving phytochemicals and raising productivity in soil infected by root-knot nematodes. This work aims to understand the characteristics of certain nanomaterials, including non-iron (nFe), green non-iron (GnFe), and green magnetic nanobiochar (GMnB), and the effect of adding them at 3 and 6 mg kg- 1 on phytochemicals and tomato (Solanum lycopersicum) plant growth in soils infected by root-knot nematodes. RESULTS: Spectroscopic characterization of nanomaterials showed that nFe, GnFe, and GMnB contained functional groups (e.g., Fe-O, S-H, C-H, OH, and C = C) and possessed a large surface area. Application of GMB at 6 mg kg- 1 was the most efficient treatment for increasing the phytochemicals of the tomato plant, with a rise of 123.2% in total phenolic, 194.7% in total flavonoids, 89.7% in total carbohydrate, 185.2% in total free amino acids, and 165.1% in total tannin compared to the untreated soil. Tomato plant growth and attributes increased with increasing levels of soil nano-amendment in this investigation. The addition of GnFe3 and GnFe6 increased the reduction of root galls of root-knot nematodes by 22.44% and 17.76% compared with nFe3 and nFe6, respectively. The inclusion of the examined soil nano-amendments increased phytochemicals and reduced the total number of root-knot nematodes on tomato plants at varying rates, which played a significant role in enhancing tomato growth. CONCLUSIONS: In conclusion, treating tomato plants with GnFe or GMnB can be used as a promising green nanomaterial to eliminate root-knot nematodes and increase tomato yield in sandy clay loam soil.


Assuntos
Compostos Fitoquímicos , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Compostos Fitoquímicos/química , Tylenchoidea/fisiologia , Tylenchoidea/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Nanopartículas Magnéticas de Óxido de Ferro/química , Resistência à Doença , Raízes de Plantas/parasitologia , Solo/parasitologia , Solo/química
5.
Front Plant Sci ; 15: 1377453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745927

RESUMO

Root-knot nematodes (Meloidogyne spp., RKN) are among the most destructive endoparasitic nematodes worldwide, often leading to a reduction of crop growth and yield. Insights into the dynamics of host-RKN interactions, especially in varied biotic and abiotic environments, could be pivotal in devising novel RKN mitigation measures. Plant growth-promoting bacteria (PGPB) involves different plant growth-enhancing activities such as biofertilization, pathogen suppression, and induction of systemic resistance. We summarized the up-to-date knowledge on the role of PGPB and abiotic factors such as soil pH, texture, structure, moisture, etc. in modulating RKN-host interactions. RKN are directly or indirectly affected by different PGPB, abiotic factors interplay in the interactions, and host responses to RKN infection. We highlighted the tripartite (host-RKN-PGPB) phenomenon with respect to (i) PGPB direct and indirect effect on RKN-host interactions; (ii) host influence in the selection and enrichment of PGPB in the rhizosphere; (iii) how soil microbes enhance RKN parasitism; (iv) influence of host in RKN-PGPB interactions, and (v) the role of abiotic factors in modulating the tripartite interactions. Furthermore, we discussed how different agricultural practices alter the interactions. Finally, we emphasized the importance of incorporating the knowledge of tripartite interactions in the integrated RKN management strategies.

6.
Biology (Basel) ; 13(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38666879

RESUMO

Pumpkins (Cucurbita moschata), valued for their nutritional, medicinal, and economic significance, face threats from Meloidogyne incognita, a critical plant-parasitic nematode. This study extensively examines the impact of M. incognita on the growth, physiological, and biochemical responses of C. moschata. We demonstrate that M. incognita infection leads to significant growth impairment in C. moschata, evidenced by reduced plant height and biomass, along with the significant development of nematode-induced galls. Concurrently, a pronounced oxidative stress response was observed, characterized by elevated levels of hydrogen peroxide and a significant increase in antioxidant defense mechanisms, including the upregulation of key antioxidative enzymes (superoxide dismutase, glutathione reductase, catalase, and peroxidase) and the accumulation of glutathione. These responses highlight a dynamic interaction between the plant and the nematode, wherein C. moschata activates a robust antioxidant defense to mitigate the oxidative stress induced by nematode infection. Despite these defenses, the persistence of growth impairment underscores the challenge posed by M. incognita to the agricultural production of C. moschata. Our findings contribute to the understanding of plant-nematode interactions, paving the way for the development of strategies aimed at enhancing resistance in Cucurbitaceae crops against nematode pests, thus supporting sustainable agricultural practices.

7.
Plant Cell Environ ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679939

RESUMO

Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.

8.
Arch Microbiol ; 206(4): 160, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483595

RESUMO

Root-knot nematodes (RKN) are one of the most harmful soil-borne plant pathogens in the world. Actinobacteria are known phytopathogen control agents. The aim of this study was to select soil actinobacteria with control potential against the RKN (Meloidogyne javanica) in tomato plants and to determine mechanisms of action. Ten isolates were tested and a significant reduction was observed in the number of M. javanica eggs, and galls 46 days after infestation with the nematode. The results could be explained by the combination of different mechanisms including parasitism and induction of plant defense response. The M. javanica eggs were parasited by all isolates tested. Some isolates reduced the penetration of juveniles into the roots. Other isolates using the split-root method were able to induce systemic defenses in tomato plants. The 4L isolate was selected for analysis of the expression of the plant defense genes TomLoxA, ACCO, PR1, and RBOH1. In plants treated with 4L isolate and M. javanica, there was a significant increase in the number of TomLoxA and ACCO gene transcripts. In plants treated only with M. javanica, only the expression of the RBOH1 and PR1 genes was induced in the first hours after infection. The isolates were identified using 16S rRNA gene sequencing as Streptomyces sp. (1A, 3F, 4L, 6O, 8S, 9T, and 10U), Kribbella sp. (5N), Kitasatospora sp. (2AE), and Lentzea sp. (7P). The efficacy of isolates from the Kitasatospora, Kribbella, and Lentzea genera was reported for the first time, and the efficacy of Streptomyces genus isolates for controlling M. javanica was confirmed. All the isolates tested in this study were efficient against RKN. This study provides the opportunity to investigate bacterial genera that have not yet been explored in the control of M. javanica in tomatoes and other crops.


Assuntos
Actinobacteria , Actinomycetales , Solanum lycopersicum , Tylenchoidea , Animais , Doenças das Plantas/prevenção & controle , Tylenchoidea/genética , Actinobacteria/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Actinomycetales/genética , Solo
9.
Mycorrhiza ; 34(1-2): 145-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441668

RESUMO

Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.


Assuntos
Glomeromycota , Micorrizas , Solanum lycopersicum , Tylenchoidea , Animais , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Glomeromycota/fisiologia , Plantas
10.
Methods Mol Biol ; 2756: 103-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427294

RESUMO

The use of nonhost, tolerant, or resistant plants, to manage plant parasitic nematodes (PPNs), is an appealing, economic, and environmentally friendly agronomic practice, which is effective when precise information on the identification of PPN species and their virulence to target host crops is available. This chapter describes suggested protocols to evaluate the reaction of the most important crops and fruit trees to infestation by the most damaging PPN with sedentary endoparasitic habits, with the aim of assessing resistance and tolerance traits, sources of resistance in progenies from breeding programs, the reaction to nematodes of newly released cultivars, and the virulence of the most noxious PPNs. These protocols consist of classical screening techniques not involving biochemical and molecular analyses. PPN species and genera considered in this chapter include (i) the most important species of root-knot nematodes Meloidogyne spp., including also M. chitwoodi, M. enterolobii, and M. graminicola, and (ii) the cyst-forming nematodes of the genera Globodera and Heterodera, such as the potato cyst nematodes (PCNs) Globodera rostochiensis and G. pallida, and also Heterodera avenae group, H. ciceri, H. glycines, and H. schachtii. Schemes are given to identify virulence groups for most of these nematodes.


Assuntos
Melhoramento Vegetal , Tylenchoidea , Animais , Virulência , Produtos Agrícolas
11.
Methods Mol Biol ; 2756: 317-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427302

RESUMO

Meloidogyne species, as infective second-stage juveniles (J2s) larvae, are parasites able to attack host of relevant agronomic interest such as tomato plants. The identification of gene expression markers, useful to investigate the levels of root-knot nematode infection in the roots, is a fundamental tool in plant-pathogen interaction. The laboratory methods for analyzing the differential expression of pathogenesis-related (PR) genes constitute powerful tools for detecting the induced systemic acquired resistance defense response to M. incognita in infected plants and can be extended to all pathogen infection markers to obtain an early and sustainable control.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Solanum lycopersicum/genética , Tylenchoidea/genética , Raízes de Plantas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Suscetibilidade a Doenças/metabolismo
12.
Methods Mol Biol ; 2756: 291-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427300

RESUMO

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Assuntos
Micorrizas , Nematoides , Animais , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Nematoides/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Solo
13.
Plant Environ Interact ; 5(1): e10133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323129

RESUMO

Arabidopsis thaliana is a suitable host for phytoparasitic nematodes of the genus Meloidogyne. Successful nematode infection leads to the formation of root galls. We tested for natural genetic variation and inoculation density effects on nematode reproductive success in the interaction between A. thaliana and Meloidogyne javanica. We inoculated different Arabidopsis genotypes with two sources of nematodes at two different doses, using a mild protocol for inoculum preparation. We counted root galls and egg masses 2 months after inoculation. We obtained a high number of successful nematode infections. Infection success differed among Arabidopsis genotypes in interaction with the nematode source. Overall, infection success and reproductive success of nematodes were lower at a higher inoculum dose of nematodes. Our results indicate that natural genetic variation in both host plants and nematodes, as well as short- and long-term negative density effects, shape nematode reproductive success.

14.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256846

RESUMO

Meloidogyne enterolobii is an extremely important plant parasitic nematode. Tomato (Solanum lycopersicum) is an essential worldwide vegetable, and M. enterolobii poses a major threat to its production. The present research investigated the effects of different levels of inoculum density of M. enterolobii (100, 500, 1000, 1500, and 2000 second-stage juveniles (J2s)/plant) on tomato growth, physiological, and biochemical changes at 7, 14, 21, and 28 days post-inoculation (dpi). The negative impact of M. enterolobii on plants gradually increased when the inoculum level increased. Therefore, M. enterolobii population densities (500-2000 J2s/plant) significantly (p < 0.05) reduced plant growth, photosynthetic pigmentation, gas exchange, and chlorophyll fluorescence compared to control plants, while the low population density (100 J2s/plant) showed very little influence. Furthermore, plants with the highest M. enterolobii inoculum (2000 J2s/plant) exhibited a greater number of egg masses and galls. The inoculum densities of M. enterolobii exhibited a notable correlation with the significant elevation of both malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, which are recognized as very detrimental stresses in plants. Similarly, a rise in the activity of several defensive antioxidant enzymes, namely superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), indicates the defensive mechanism used to combat the oxidative destruction produced by M. enterolobii. The specific activity of glutathione (GSH) and ascorbate (ASA) increased as potent antioxidant defense molecules in response to induced oxidative damage. In addition, our findings also demonstrated that the highest population density (2000 J2s/plant) increased the secondary metabolites responsible for scavenging oxidative stress in the plants. However, further research is required to explore the underlying reasons for this phenomenon and to develop efficient chemical or biocontrol strategies for managing M. enterolobii.

15.
Mol Plant Microbe Interact ; 37(3): 179-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870371

RESUMO

Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Feminino , Tylenchoidea/genética , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais , Produtos Agrícolas , Doenças das Plantas/parasitologia
16.
New Phytol ; 241(2): 878-895, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044565

RESUMO

The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tylenchoidea/fisiologia
17.
Pest Manag Sci ; 80(4): 2120-2130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145906

RESUMO

BACKGROUND: Root-knot nematodes (RKNs) are the highly damaging pests for various crops, and the prevalence of RKNs has posed serious threats to worldwide agricultural harvest, severely affecting global food security and ecosystem health. Traditional pesticide systems on controlling RKNs generally cause environmental hazards and phytotoxicity due to the excessive use of pesticides resulted from low utilization efficiency. And effective approaches with biosafe and efficient features are highly demanded to break away from the dilemma caused by RKNs. RESULTS: In this research, a nanopesticide system with root-targeted delivery function was developed to achieve effective prevention and control of RKNs. The nanocarriers (MSN-KH560-Gly) and the obtained nanopesticides (EB@MSN-KH560-Gly) were proved to be biosafe. Also, this nanopesticide system demonstrated sustained release behavior. The grafting of glycine (Gly) significantly improved the pesticide contents translocating to cucumber roots (about 304.7%). Besides, such root-targeted delivery function resulted in no root nodule in cucumber plants after the foliar application of these nanopesticides (prevention rate of 100%). In addition, the root nodule numbers of the infected cucumber plants decreased by 71.67%. CONCLUSION: Foliar application of these Gly-functionalized nanopesticides achieved effective prevention and control of RKNs due to the root-targeted delivery property inherent in this nanopesticide system, and such root-targeted delivery strategy opens a novel and efficient method to protect crops from RKN invasion and thus facilitates the development of sustainable agriculture. © 2023 Society of Chemical Industry.


Assuntos
Cucumis sativus , Praguicidas , Tylenchoidea , Animais , Ecossistema , Raízes de Plantas , Produtos Agrícolas
18.
J Imaging ; 9(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998089

RESUMO

Plant-parasitic nematodes (PPN), especially sedentary endoparasitic nematodes like root-knot nematodes (RKN), pose a significant threat to major crops and vegetables. They are responsible for causing substantial yield losses, leading to economic consequences, and impacting the global food supply. The identification of PPNs and the assessment of their population is a tedious and time-consuming task. This study developed a state-of-the-art deep learning model-based decision support tool to detect and estimate the nematode population. The decision support tool is integrated with the fast inferencing YOLOv5 model and used pretrained nematode weight to detect plant-parasitic nematodes (juveniles) and eggs. The performance of the YOLOv5-640 model at detecting RKN eggs was as follows: precision = 0.992; recall = 0.959; F1-score = 0.975; and mAP = 0.979. YOLOv5-640 was able to detect RKN eggs with an inference time of 3.9 milliseconds, which is faster compared to other detection methods. The deep learning framework was integrated into a user-friendly web application system to build a fast and reliable prototype nematode decision support tool (NemDST). The NemDST facilitates farmers/growers to input image data, assess the nematode population, track the population growths, and recommend immediate actions necessary to control nematode infestation. This tool has the potential for rapid assessment of the nematode population to minimise crop yield losses and enhance financial outcomes.

19.
Heliyon ; 9(11): e21653, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954375

RESUMO

Root-knot nematodes (Meloidogyne spp.) are obligate sedentary endoparasites, considered severe crop-damaging taxa among all plant-parasitic nematodes globally. Their attacks through parasitic proteins alter the physiology and machinery of the host cells to favour parasitism and reduction in crop yield. Currently, the use of excessive pesticides as a fast remedy to manage this pest is hazardous for both the environment and humans. Keeping this view in mind, there is an urgent need for developing efficient eco-friendly strategies. Bio-control as an eco-friendly is considered the best approach to manage nematodes without disturbing non-target microbes. In bio-control, living agents such as fungi and bacteria are the natural enemies of nematodes and the best substitute for pesticides. Fungi, including nematode-trapping fungi, can sense host signals and produce special trapping devices viz., constricting rings and adhesive knobs/loops, to capture nematodes and kill them. Whereas, endo-parasitic fungi kill nematodes by enzymatic secretions and spore adhesion through their hyphae. Bacteria can also control nematodes by producing antibiotic compounds, competing for nutrients and rhizosphere, production of hydrolytic enzymes viz., chitinases, proteases, lipases, and induction of systemic resistance (ISR) in host plants. Scientists throughout the world are trying to evolve environmentally benign methods that sustain agricultural production and keep nematodes below a threshold level. Whatever methods evolve, in the future the focus should be on important aspects like green approaches for managing nematodes without disturbing human health and the environment.

20.
Plant Dis ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849284

RESUMO

Root-knot nematodes (Meloidogyne spp.) are plant-parasitic nematodes that cause serious damage on a worldwide basis. There are many species of traditional Chinese medicine (TCM) plants, but only a few have been reported to be infected by Meloidogyne species. From 2020 to 2022, a survey was conducted in the Qinling mountain area, which is the main producing region of TCM plants in China. Obvious galling symptoms were observed on the root systems of fifteen species of TCM plants. Females were collected from diverse diseased TCM plants and subsequently identified at morphological and molecular level. Among the twenty diseased root samples collected, Meloidogyne hapla populations were identified in twelve samples (60%) and Meloidogyne incognita populations were identified in eight samples (40%). Among the fifteen species of diseased TCM plants, eight of them, namely Scutellaria baicalensis, Leonurus japonicus, Dioscorea zingiberensis, Cornus officinalis, Viola philippica, Achyranthes bidentata, Senecio scandens, and Plantago depressa were reported to be infected by Meloidogyne species for the first time. The host status of five species of TCM plants for two M. hapla isolates and one M. incognita isolate from TCM plants in this study was then evaluated. Differences in TCM plants' response to nematode infection were apparent when susceptibility was evaluated by the egg counts per gram fresh weight of root and the reproduction factor of the nematodes. Among the five species of TCM plants tested, Salvia miltiorrhiza and Gynostemma pentaphyllum were the most susceptible, while S. baicalensis and V. philippica were not considered suitable hosts for M. hapla or M. incognita.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...