Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmacol Res ; 204: 107200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710241

RESUMO

Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.


Assuntos
Antineoplásicos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Terapia de Alvo Molecular , Neoplasias , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
2.
Sci Rep ; 14(1): 11132, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750088

RESUMO

Candida species have been responsible for a high number of invasive infections worldwide. In this sense, Rottlerin has demonstrated a wide range of pharmacological activities. Therefore, this study aimed to evaluate the antifungal, antibiofilm and antivirulence activity of Rottlerin in vitro against Candida spp. and its toxicity and antifungal activity in vivo. Rottlerin showed antifungal activity against all yeasts evaluated, presenting Minimum Inhibitory and Fungicidal Concentration (MIC and MFC) values of 7.81 to > 1000 µg/mL. Futhermore, it was able to significantly inhibit biofilm production, presenting Biofilm Inhibitory Concentration (MICB50) values that ranged from 15.62 to 250 µg/mL and inhibition of the cell viability of the biofilm by 50% (IC50) from 2.24 to 12.76 µg/mL. There was a considerable reduction in all hydrolytic enzymes evaluated, with emphasis on hemolysin where Rottlerin showed a reduction of up to 20%. In the scanning electron microscopy (SEM) analysis, Rottlerin was able to completely inhibit filamentation by C. albicans. Regarding in vivo tests, Rottlerin did not demonstrate toxicity at the therapeutic concentrations demonstrated here and was able to increase the survival of C. elegans larvae infected. The results herein presented are innovative and pioneering in terms of Rottlerin's multipotentiality against these fungal infections.


Assuntos
Acetofenonas , Antifúngicos , Benzopiranos , Biofilmes , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Antifúngicos/farmacologia , Benzopiranos/farmacologia , Animais , Acetofenonas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candida albicans/efeitos dos fármacos
3.
Mol Neurobiol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671330

RESUMO

Intra-neuronal accumulation of hyper-phosphorylated tau as neurofibrillary tangles (NFT) is a hallmark of Alzheimer's disease (AD). To prevent the aggregation of phosphorylated tau in neurons, decreasing the phosphorylated tau protein levels is important. Here, we examined the biological effects of rottlerin, a phytochemical compound extracted from the Kamala tree, Mallotus philippinensis, on phosphorylated tau levels. Notably, rottlerin decreased the levels of intracellular phosphorylated and total tau. A marked increase in the LC3-II, a hallmark of autophagy, was observed in these cells, indicating that rottlerin strongly induced autophagy. Interestingly, rottlerin induced the phosphorylation of Raptor at S792 through the activation of adenosine-monophosphate activated-protein kinase (AMPK), which likely inhibits the mammalian target of rapamycin complex 1 (mTORC1), thus resulting in the activation of transcription factor EB (TFEB), a master regulator of autophagy. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activity increased in the presence of rottlerin. The decrease of phosphorylated tau levels in the presence of rottlerin was ameliorated by the knockdown of TFEB and partially attenuated by the knockout of the Nrf2 gene. Taken together, rottlerin likely enhances the degradation of phosphorylated tau through autophagy activated by TFEB and Nrf2. Thus, our results suggest that a natural compound rottlerin could be used as a preventive and therapeutic drug for AD.

4.
Cancers (Basel) ; 16(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38539429

RESUMO

Pediatric adrenocortical tumors (ACTs) are rare, highly heterogeneous neoplasms with limited therapeutic options, making the investigation of new targets with potential therapeutic or prognostic purposes urgent. The PRKAB2 gene produces one of the subunits of the AMP-activated protein kinase (AMPK) complex and has been associated with cancer. However, little is known about the role AMPK plays in ACTs. We have evaluated how PRKAB2 is associated with clinical and biological characteristics in 63 pediatric patients with ACTs and conducted in vitro studies on the human NCI-H295R ACC cell line. An analysis of our cohort and the public ACC pediatric dataset GSE76019 showed that lower PRKAB2 expression was associated with relapse, death, metastasis, and lower event-free and overall survival rates. Multivariate analysis showed that PRKAB2 expression was an independent prognostic factor when associated with age, tumor weight and volume, and metastasis. In vitro tests on NCI-H295R cells demonstrated that Rottlerin, a drug that can activate AMPK, modulated several pathways in NCI-H295R cells, including AMPK/mTOR, Wnt/ß-catenin, SKP2, HH, MAPK, NFKB, and TNF. Treatment with Rottlerin decreased cell proliferation and migration, clonogenic capacity, and steroid production. Together, these results suggest that PRKAB2 is a potential prognostic marker in pediatric ACTs, and that Rottlerin is promising for investigating drugs that can act against ACTs.

5.
Chem Biol Interact ; 384: 110716, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722575

RESUMO

Congenital toxoplasmosis, caused by the opportunistic protozoan parasite T. gondii, can cause stillbirths, miscarriages and fetal abnormalities, as well as encephalitis and chorioretinitis in newborns. Available treatment options rely on antiparasitic drugs that have been linked to serious side effects, high toxicity and the development of drug-resistant parasites. The search for alternative therapeutics to treat this disease without acute toxicity for the mother and child is essential for the advancement of current therapeutic procedures. The present study aimed to unravel the mode of the anti-T. gondii action of Rottlerin, a natural polyphenol with multiple pharmacological properties described. Herein, we further assessed the antiparasitic activity of Rottlerin against T. gondii infection on the human trophoblastic cells (BeWo cells) and, for the first time, on human villous explants. We found that non-cytotoxic doses of Rottlerin impaired early and late steps of parasite infection with an irreversible manner in BeWo cells. Rottlerin caused parasite cell cycle arrest in G1 phase and compromised the ability of tachyzoites to infect new cells, thus highlighting the possible direct action on parasites. An additional and non-exclusive mechanism of action of Rottlerin involves the modulation of host cell components, by affecting lipid droplet formation, mitochondrial function and upregulation of the IL-6 and MIF levels in BeWo cells. Supporting our findings, Rottlerin also controlled T. gondii proliferation in villous explants with low toxicity and reduced the IL-10 levels, a cytokine associated with parasite susceptibility. Collectively, our results highlighted the potential use of Rottlerin as a promising tool to prevent and/or treat congenital toxoplasmosis.

6.
Food Sci Biotechnol ; 32(10): 1445-1452, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37457404

RESUMO

Rottlerin is isolated from Mallotus japonicus, a plant rich in polyphenols. Rottlerin is a selective PKCδ-inhibitor and is also known as an uncoupler of oxidative phosphorylation and anti-neoplastic agent. However, its anti-obesity effect is yet to be established. Therefore, this study tested whether rottlerin inhibits adipogenesis and de novo lipogenesis via the LRP6/mTOR/SREBP1C pathway in 3T3-L1 adipocytes. Rottlerin dramatically decreased lipid accumulation assessed by Oil Red O as evidence to support the cellular phenotype (p < 0.001). Pivotal messenger RNA and protein expressions associated with de novo lipogenesis (SREBP1C, ACC1, FAS, and SCD1) and adipogenesis (PPARγ and C/EBPα) were subsequentially verified by rottlerin in a dose-dependent manner (p < 0.05). Further investigation revealed that rottlerin reduced the AKT/mTOR pathway via diminished total protein of LRP6 (p < 0.05). Collectively, these findings establish a causal link between rottlerin, LRP6, and the altered nutrient-sensing mTOR pathway, in which rottlerin regulates de novo lipogenesis and adipogenesis in white adipocytes.

7.
Vet Sci ; 10(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37368766

RESUMO

Rottlerin (R) is a natural extract from Mallotus philippensis with antiviral properties. Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) that is characterized by systemic granulomatous inflammation and high mortality. We investigated the antiviral effect of liposome-loaded R, i.e., rottlerin-liposome (RL), against FCoV. We demonstrated that RL inhibited FCoV replication in a dose-dependent manner, not only in the early endocytosis stage but also in the late stage of replication. RL resolved the low solubility issue of rottlerin and improved its inhibition efficacy at the cellular level. Based on these findings, we suggest that RL is worth further investigation as a potential treatment for FCoV.

8.
Int J Antimicrob Agents ; 62(3): 106893, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339711

RESUMO

OBJECTIVE: Several coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus OC43 (HCoV-OC43), can cause respiratory infections in humans. To address the need for reliable anti-coronavirus therapeutics, we screened 16 active phytochemicals selected from medicinal plants used in traditional applications for respiratory-related illnesses. METHODS: An initial screen was completed using HCoV-OC43 to identify compounds that inhibit virus-induced cytopathic effect (CPE) and cell death inhibition. Then the top hits were validated in vitro against both HCoV-OC43 and SARS-CoV-2 by determining virus titer in cell supernatant and virus-induced cell death. Finally, the most active phytochemical was validated in vivo in the SARS-CoV-2-infected B6.Cg-Tg(K18-ACE2)2Prlmn/J mouse model. RESULTS: The phytochemicals lycorine (LYC), capsaicin, rottlerin (RTL), piperine and chebulinic acid (CHU) inhibited HCoV-OC43-induced cytopathic effect and reduced viral titres by up to 4 log. LYC, RTL and CHU also suppressed virus replication and cell death following SARS-CoV-2 infection. In vivo, RTL significantly reduced SARS-CoV-2-induced mortality by ∼40% in human angiotensin-converting enzyme 2 (ACE2)-expressing K18 mice. CONCLUSION: Collectively, these studies indicate that RTL and other phytochemicals have therapeutic potential to reduce SARS-CoV-2 and HCoV-OC43 infections.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , Animais , Camundongos , Coronavirus Humano OC43/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
9.
Chem Biol Interact ; 380: 110524, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146929

RESUMO

CYP2C8 is a crucial CYP isoform responsible for the metabolism of xenobiotics and endogenous molecules. CYP2C8 converts arachidonic acid to epoxyeicosatrienoic acids (EETs) that cause cancer progression. Rottlerin possess significant anticancer actions. However, information on its CYP inhibitory action is lacking in the literature and therefore, we aimed to explore the same using in silico, in vitro, and in vivo approaches. Rottlerin showed highly potent and selective CYP2C8 inhibition (IC50 < 0.1 µM) compared to negligible inhibition (IC50 > 10 µM) for seven other experimental CYPs in human liver microsomes (HLM) (in vitro) using USFDA recommended index reactions. Mechanistic studies reveal that rottlerin could reversibly (mixed-type) block CYP2C8. Molecular docking (in silico) results indicate a strong interaction could occur between rottlerin and the active site of human CYP2C8. Rottlerin boosted the plasma exposure of repaglinide and paclitaxel (CYP2C8 substrates) by delaying their metabolism using the rat model (in vivo). Multiple-dose treatment of rottlerin with CYP2C8 substrates lowered the CYP2C8 protein expression and up-regulated & down-regulated the mRNA for CYP2C12 & CYP2C11 (rat homologs), respectively, in rat liver tissue. Rottlerin substantially hindered the EET formation in HLM. Overall results of rottlerin on CYP2C8 inhibition and EET formation insinuate further exploration for cancer therapy.


Assuntos
Sistema Enzimático do Citocromo P-450 , Neoplasias , Humanos , Ratos , Animais , Citocromo P-450 CYP2C8/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Acetofenonas , Microssomos Hepáticos/metabolismo , Neoplasias/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2481-2500, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37083712

RESUMO

Neuroblastoma is one of the most common solid tumors in children younger than 1 year of age, with poor prognosis and survival rates. Therefore, novel molecular targets and therapeutic strategies are needed to prolong patient survival. For this purpose, we investigated the effects of rottlerin and genistein separately and in combination on neuroblastoma cells (SH-SY5Y, Kelly). First, the effects of rottlerin and genistein were investigated on cell proliferation. Different rottlerin (1-50 µM) and genistein (5-150 µM) doses were used as experimental groups compared to the control (DMSO/vehicle). The IC50 dose was found to be 5 µM for rottlerin and 30 µM for genistein (P < 0.0001). Other analyses, such as colony formation assays, annexin V/propidium iodide staining, matrigel invasion assays, and Western blot analysis, were performed with these doses and their combinations. To assess statistical significance, statistical analysis was conducted using the one-way ANOVA with the post hoc Tukey test. Our results showed that IC50 doses of rottlerin and genistein induced a significant reduction in cell proliferation, colony formation, and invasion in neuroblastoma cells (P < 0.0001). The combination of these doses increased the levels of inhibition of cell proliferation and invasion while decreasing the level of apoptosis (P 0.0001). Furthermore, these agents caused G1-cell cycle arrest in these cells. Our western blot data showed that rottlerin and genistein treatments markedly inhibit elongation factor 2 kinase (EF2K) and other pro-tumorigenic, metastatic proteins in neuroblastoma cells. These agents probably showed their anti-proliferative, anti-metastatic, and pro-apoptotic effects through EF2K downregulation. Our results suggested that rottlerin and genistein have inhibitory effects on cancer cell proliferation, invasion, and cell cycle and induce apoptosis in both cell lines. Combined treatment with rottlerin and genistein may be a viable approach and beneficial to neuroblastoma patients as the combined effect significantly suppresses the above-mentioned pathways.


Assuntos
Genisteína , Neuroblastoma , Criança , Humanos , Genisteína/farmacologia , Genisteína/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Quinase do Fator 2 de Elongação , Proliferação de Células , Apoptose , Pontos de Checagem da Fase G1 do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular
11.
Chem Biol Interact ; 366: 110109, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995259

RESUMO

Despite substantial breakthroughs in cancer research, there is hardly any specific therapy available to date that can alleviate triple-negative breast cancer (TNBC). Paclitaxel is the first-line chemotherapy option, but its treatment is often associated with early discontinuation of therapy due to the development of resistance and/or precipitation of severe side effects. In the quest to establish a suitable combination therapy with a low dose of paclitaxel, we explored rottlerin (a pure and characterized phytoconstituent from Mallotus philippensis) because of its multifaceted pharmacological actions against cancer. The study was performed to assess the therapeutic effects of rottlerin (5-20 mg/kg) with a low dose of paclitaxel (5 mg/kg) using a highly aggressive mouse mammary carcinoma model. Rottlerin augmented the paclitaxel effect by reducing tumor burden as well as metastatic lung nodules formation. Rottlerin in combination with paclitaxel remarkably altered the expression of vital epithelial-mesenchymal transition (EMT) markers such as E-cadherin, Snail 1, & Vimentin and thus improved the anti-metastatic efficacy of paclitaxel. Significant attenuation of anti-apoptotic protein (Bcl-2) along with amplification of pro-apoptotic (cleaved PARP) marker confers that rottlerin could ameliorate the pro-apoptotic potential of paclitaxel. In this study, a rational combination of rottlerin and paclitaxel treatment curtailed CYP2J2 expression and epoxyeicosatrienoic acids (EETs) levels, responsible for restrain tumor growth and metastasis. Additionally, rottlerin lessened paclitaxel treatment-mediated hematological alterations and prevented paclitaxel treatment-linked key serum biochemical changes related to organ toxicities. These rottlerin treatment-mediated protective changes are closely associated with the lower paclitaxel accumulation in the corresponding tissues. Rottlerin caused significant pharmacokinetic interaction with paclitaxel to boost the plasma level of paclitaxel in a typical mouse model and possibly helpful towards the use of a low dose of paclitaxel in combination. Overall, it can be stated that rottlerin has significant potential to augment the anti-metastatic efficacy of paclitaxel via impeding EMT activation along with attenuating its treatment-associated toxicological alterations. Hence, rottlerin has significant potential to explore further as a suitable neoadjuvant therapy with paclitaxel against TNBC.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Acetofenonas , Animais , Proteínas Reguladoras de Apoptose , Benzopiranos , Caderinas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/metabolismo
12.
Virol Sin ; 37(5): 685-694, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934227

RESUMO

Infection of Zika virus (ZIKV) may cause microcephaly and other neurological disorders, while no vaccines and drugs are available. Our study revealed that rottlerin confers a broad antiviral activity against several enveloped viruses, including ZIKV, vesicular stomatitis virus, and herpes simplex virus, but not against two naked viruses (enterovirus 71 and encephalomyocarditis virus). Rottlerin does not have a direct virucidal effect on the virions, and its antiviral effect is independent of its regulation on PKCδ or ATP. Both pretreatment and post-treatment of rottlerin effectively reduce the viral replication of ZIKV. The pretreatment of rottlerin disturbs the endocytosis of enveloped viruses, while the post-treatment of rottlerin acts at a late stage through disturbing the maturation of ZIKV. Importantly, administration of rottlerin in neonatal mice significantly decreased the ZIKV replication in vivo, and alleviated the neurological symptoms caused by ZIKV. Our work suggests that rottlerin exerts an antiviral activity at two distinct steps of viral infection, and can be potentially developed as a prophylactic and therapeutic agent.


Assuntos
Infecção por Zika virus , Zika virus , Acetofenonas , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzopiranos , Camundongos , Replicação Viral
13.
J Neuroinflammation ; 19(1): 142, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690821

RESUMO

BACKGROUND: It has been demonstrated that reactive astrocytes can be polarized into pro-inflammatory A1 phenotype or anti-inflammatory A2 phenotype under neurotoxic and neurodegenerative conditions. Microglia have been suggested to play a critical role in astrocyte phenotype polarization by releasing pro- and anti-inflammatory mediators. In this study, we examined whether trimethyltin (TMT) insult can induce astrocyte polarization in the dentate gyrus of mice, and whether protein kinase Cδ (PKCδ) plays a role in TMT-induced astrocyte phenotype polarization. METHODS: Male C57BL/6 N mice received TMT (2.6 mg/kg, i.p.), and temporal changes in the mRNA expression of A1 and A2 phenotype markers were evaluated in the hippocampus. In addition, temporal and spatial changes in the protein expression of C3, S100A10, Iba-1, and p-PKCδ were examined in the dentate gyrus. Rottlerin (5 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of A1 and A2 transcripts, p-PKCδ, Iba-1, C3, S100A10, and C1q was evaluated 6 days after TMT treatment. RESULTS: TMT treatment significantly increased the mRNA expression of A1 and A2 phenotype markers, and the increased expression of A1 markers remained longer than that of A2 markers. The immunoreactivity of the representative A1 phenotype marker, C3 and A2 phenotype marker, S100A10 peaked 6 days after TMT insult in the dentate gyrus. While C3 was expressed evenly throughout the dentate gyrus, S100A10 was highly expressed in the hilus and inner molecular layer. In addition, TMT insult induced microglial p-PKCδ expression. Treatment with rottlerin, a PKCδ inhibitor, decreased Iba-1 and C3 expression, but did not affect S100A10 expression, suggesting that PKCδ inhibition attenuates microglial activation and A1 astrocyte phenotype polarization. Consistently, rottlerin significantly reduced the expression of C1q and tumor necrosis factor-α (TNFα), which has been suggested to be released by activated microglia and induce A1 astrocyte polarization. CONCLUSION: We demonstrated the temporal and spatial profiles of astrocyte polarization after TMT insult in the dentate gyrus of mice. Taken together, our results suggest that PKCδ plays a role in inducing A1 astrocyte polarization by promoting microglial activation and consequently increasing the expression of pro-inflammatory mediators after TMT insult.


Assuntos
Astrócitos , Complemento C1q , Acetofenonas , Animais , Astrócitos/metabolismo , Benzopiranos , Complemento C1q/metabolismo , Giro Denteado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Compostos de Trimetilestanho
14.
Biomedicines ; 10(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740338

RESUMO

Exosomes/microvesicles originate from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of rottlerin, a polyphenol, on exosome/microvesicle secretion in a model of intracellular lipid trafficking impairment, and elucidated the mechanism of action. In a model of lipid trafficking impairment in C6 glia cells, rottlerin increased ceramide levels, while decreasing hexosylceramide content. This was accompanied by increased exosome/microvesicle secretion, thereby reducing the concentration of lipids in the endolysosomal compartment. The reduction of hexosylceramide levels by rottlerin was attributed to the increase of ß-glucosidase (glucosylceramidase) activity, and the effects of rottlerin were abrogated by ß-glucosidase inhibitors such as isofagomine D-tartrate and AMP-deoxynojirimycin. Moreover, treatment with ML-266, a potent activator of the ß-glucosidase enzyme, recapitulated the effects of rottlerin on the sphingolipid profile and exosome/microvesicle secretion. Finally, inhibition of AMPK (AMP-activated protein kinase) using compound C prevented both exosome/microvesicle secretion and the elimination of endolysosome lipids, which were promoted by rottlerin. The results showed that the decrease in intracellular lipid deposition induced by rottlerin was mediated by ß-glucosidase activation and exosome/microvesicle release via the AMPK pathway. Rottlerin consumption could represent an additional health benefit in lysosomal deposition diseases.

15.
EXCLI J ; 20: 1585-1596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924906

RESUMO

After prostatectomy due to prostate carcinoma, patients often develop metastases. Although prostate cancer is susceptible to hormonal manipulation, many patients become castration-resistant. Therefore, new therapies are the focus of investigations. We analyzed the effect of the tyrosine kinase inhibitors (TKIs), sorafenib and sunitinib, in combination with rottlerin, a PKCδ inhibitor, on metastatic mechanisms in prostate carcinoma cells. LNCaP and PC-3 prostate carcinoma cells were treated with sorafenib or sunitinib alone at various concentrations (1-20 µM) or in combination with rottlerin (10 µM) for 24 h. Then, cell toxicity (MTT test) and cell proliferation (BrdU incorporation assay) were quantified. The study demonstrated a dose-dependent inhibitory effect of sorafenib and sunitinib on PC-3 and LNCaP cell activity and proliferation. Both agents showed significantly stronger cytotoxic effects in LNCaP cells. At the highest concentrations, sorafenib and sunitinib inhibited the viability of LNCaP cells up to 2 % and 31 %, respectively, and the viability of PC-3 cell line up to 20 % and 43 %, respectively. The proliferation of both cell lines was significantly stronger inhibited by sorafenib than by sunitinib. In LNCaP cells, sorafenib and sunitinib at the highest concentrations inhibited cell proliferation up to 46 % and 49 %, respectively, and the proliferation of PC-3 line up to 40 % and 47 %, respectively. Rottlerin reduced the viability and proliferation of PC3 cells to 81 % and 42 %, whereas the viability and proliferation of LNCaP cells were reduced to 25 % and 57 %, respectively. Sorafenib and sunitinib at low concentrations partly neutralized the inhibitory effect of rottlerin on cell viability and proliferation. On the other hand, in PC-3 cells, rottlerin reduced the inhibitory effects of sorafenib and sunitinib at the highest concentrations on cell viability from 20 % to 30 % and from 43 % to 61 %, respectively. An additive effect on cell activity was observed after treating LNCaP cells with both sunitinib at high concentrations and rottlerin. This combination increased the cytotoxic effect from 31 % to 13 % at the highest sunitinib concentration. Our results showed that monotherapy with sorafenib was the most efficient in both PCa cell lines. A marginally additive effect of rottlerin was only observed in LNCaP cells treated with sunitinib at a high concentration. Sorafenib and sunitinib reduced cell migration in PC-3 cells to 10 % and 32 % of untreated cells, respectively. Co-treatment with sorafenib/sunitinib and rottlerin did not result in a significantly stronger anti-migratory effect than the treatment with each TKI alone. Given the strong cytotoxic effect of TKIs, especially sorafenib, on LNCaP cells, the results of the migration assay in this line were severely biased and not considered in the analysis. Unlike in other malignancies, combination therapy with TKI and rottlerin seems not beneficial in prostate cancer. More promising seems to be monotherapy with rottlerin, but further studies are needed to confirm this observation.

16.
Antiviral Res ; 195: 105191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678331

RESUMO

Owing to several limitations of porcine reproductive and respiratory syndrome virus (PRRSV) control procedures, the importance of antiviral agents is increasing; however, limited studies have been done on the development of anti-PRRSV agents. Herein, we explored the antiviral effect and mechanism of rottlerin against PRRSV. We demonstrated that treatment of rottlerin at an early stage of PRRSV infection significantly inhibited the viral replication. PRRSV infection induced protein kinase C-δ phosphorylation, which was specifically downregulated by rottlerin. The treatment of rottlerin led to disrupting the PRRSV entry pathway by blocking endocytosis of the virions. Further, to evaluate the anti-PRRSV effect of the rottlerin in vivo, we administrated rottlerin loaded liposome to pigs infected with PRRSV LMY or FL12 strain. The treatment of rottlerin-liposome reduced the blood viral load, interstitial pneumonia and clinical scores compared to untreated pigs. These results provide an evidence of anti-PRRSV effect of rottlerin in vitro via inhibiting PRRSV internalization and in vivo, all of which strongly suggest the applicability of rottlerin as a potential PRRSV prophylactic treatment.


Assuntos
Acetofenonas/farmacologia , Antivirais/farmacologia , Benzopiranos/farmacologia , Endocitose/efeitos dos fármacos , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Linhagem Celular , Doenças Pulmonares Intersticiais/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos , Carga Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
17.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205355

RESUMO

Rottlerin is a natural product consisting of chalcone and flavonoid scaffolds, both of which have previously shown quorum sensing (QS) inhibition in various bacteria. Therefore, the unique rottlerin scaffold highlights great potential in inhibiting the QS system of Pseudomonas aeruginosa. Rottlerin analogues were synthesised by modifications at its chalcone- and methylene-bridged acetophenone moieties. The synthesis of analogues was achieved using an established five-step synthetic strategy for chalcone derivatives and utilising the Mannich reaction at C6 of the chromene to construct morpholine analogues. Several pyranochromene chalcone derivatives were also generated using aldol conditions. All the synthetic rottlerin derivatives were screened for QS inhibition and growth inhibition against the related LasR QS system. The pyranochromene chalcone structures displayed high QS inhibitory activity with the most potent compounds, 8b and 8d, achieving QS inhibition of 49.4% and 40.6% and no effect on bacterial growth inhibition at 31 µM, respectively. Both compounds also displayed moderate biofilm inhibitory activity and reduced the production of pyocyanin.


Assuntos
Acetofenonas/farmacologia , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia
18.
Psychopharmacology (Berl) ; 238(2): 421-439, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33146738

RESUMO

RATIONALE AND OBJECTIVE: As a eukaryotic elongation factor 2 kinase (eEF2K) inhibitor and a mitochondrial uncoupler, oncologists have extensively studied rottlerin. Neuroscientists, however, have accumulated scarce data on the role of rottlerin in affective and cognitive functions. Only two prior studies have, respectively, documented its antidepressant-like effect and how it impairs psychostimulant-supported memory. Whether or not rottlerin would affect aversive memory remains unknown. Hence, we sought to investigate the effects of rottlerin on aversive memory in the inhibitory avoidance (IA) task in mice. MATERIALS AND METHODS: Male C57BL/6J mice were trained to acquire the IA task. Rottlerin (5 mg/kg, i.p. or 3 µg bilaterally in the hippocampus) or the vehicle was administered before footshock training (acquisition), after footshock training (consolidation), after the memory reactivation (reconsolidation), and before the test (retrieval) in the IA task. RESULTS: Systemic and intrahippocampal rottlerin impaired the acquisition, consolidation, and retrieval of IA memory, without affecting the reconsolidation process. Rottlerin (5 mg/kg, i.p.) induced a fast-onset and long-lasting increase in the brain-derived neurotrophic factor (BDNF) protein levels in the mouse hippocampus. Systemic injection of 7,8-dihydroxyflavone (7,8-DHF, 30 mg/kg), a BDNF tropomyosin receptor kinase B (TrkB) agonist impaired IA memory consolidation, and treatment with K252a (5 µg/kg), a Trk receptor antagonist, reversed the suppressing effect of rottlerin on IA memory consolidation. CONCLUSION: Rottlerin impairs IA memory consolidation through the enhancement of BDNF signaling in the mouse hippocampus. Excessive brain BDNF levels can be detrimental to cognitive function. Rottlerin is likely to affect the original memory-associated neuroplasticity. Thus, it can be combined with exposure therapy to facilitate the forgetting of maladaptive aversive memory, such as post-traumatic stress disorder (PTSD).


Assuntos
Acetofenonas/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Benzopiranos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/psicologia
19.
J Neuroinflammation ; 17(1): 177, 2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32505192

RESUMO

BACKGROUND: Upregulation of matrix metalloproteinase-9 (MMP-9) has been indicated as one of the inflammatory biomarkers. In the central nervous system (CNS), the MMP-9 is induced by several proinflammatory mediators and participates in the CNS disorders, including inflammation and neurodegeneration. In addition, protein kinase Cs (PKCs) has been shown to be involved in regulation of various inflammatory factors like MMP-9 by several stimuli in many cell types. Several phytochemicals are believed to reduce the risk of several inflammatory disorders including the CNS diseases. The rottlerin, a principal phenolic compound of the Kamala plant Mallotus philippinensis, has been shown to possess an array of medicinal properties, including anti-PKC-δ, antitumor, anti-oxidative, and anti-inflammatory activities. METHODS: Herein, we used rat brain astrocytes (RBA) to demonstrate the signaling mechanisms of phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 expression by zymographic, RT-PCR, subcellular isolation, Western blot, ROS detection, and promoter reporter analyses. Then, we evaluate the effects of rottlerin on PMA-induced MMP-9 expression in RBA and its influencing mechanism. RESULTS: We first demonstrated that PMA stimulated activation of various types of PKC, including PKC-δ in RBA. Subsequently, PMA induced MMP-9 expression via PKCδ-mediated reactive oxygen species (ROS) generation, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, and then induced c-Fos/AP-1 signaling pathway. Finally, upregulation of MMP-9 by PMA via the pathway may promote astrocytic migration, and the event could be attenuated by rottlerin. CONCLUSIONS: These data indicated that rottlerin may have anti-inflammatory activity by reducing these related pathways of PKC-δ-dependent ROS-mediated MMP-9 expression in brain astrocytes.


Assuntos
Acetofenonas/farmacologia , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Benzopiranos/farmacologia , Encéfalo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase C-delta/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
20.
Pharmacol Res ; 159: 104780, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360586

RESUMO

Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, and elevated intraocular pressure (IOP) is a major risk factor. While IOP is mainly controlled by adjusting the outflow resistance in the trabecular meshwork (TM), drugs that act directly on the TM are rare. In this study, we discovered a novel compound and pathway that acts on the TM and decreases IOP by genomic, proteomic, and bioinformatic analyses of POAG-derived TMs and experimental validation. Overlapping differentially expressed genes of the TM between patients with POAG and normal controls from two independent gene expression profiles in public databases were analyzed and matched by using the Connectivity Map (CMap). Rottlerin was identified as a potential compound. Subsequent experiments confirmed that rottlerin reversed POAG phenotypes in vitro and that it decreased IOP and actin/extracellular matrix accumulation in vivo with no detectable ocular side effects. SwissTargetPrediction in combination with pathway analysis predicted that the effects of rottlerin may be mediated by activation of the Rap1 pathway. Finally, we confirmed that rottlerin upregulated Rap1 and the downstream PI3K/AKT pathway independent of the MAPK/ERK pathway in a dexamethasone-induced POAG cell model.


Assuntos
Acetofenonas/farmacologia , Benzopiranos/farmacologia , Glaucoma de Ângulo Aberto/tratamento farmacológico , Pressão Intraocular/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Malha Trabecular/metabolismo , Transcriptoma , Proteínas rap1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...