Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 155: 220-229, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399849

RESUMO

Waste tire rubber (WTR) has been extensively generated worldwide due to mobility needs growth. About 1.5 billion units are generated annually, constantly discharged in the environment with a few reusability alternatives. Therefore, rubber recovery methods and these residues' transformation into a cost-effective product have gained attention. Aiming to minimize the usage of fossil resources and contributes to a circular economy, it was analyzed the usage of WTR particles (5-20% by weight) in castor oil-based polyurethane foams under natural aging to promote a holistic view of all factors involved in the performance of the foams. Morphological, thermal, chemical, and mechanical properties were determined before and after exposure to open air to observe the impact of photo-oxidation and hydrolysis. The increase in viscosity of pre-polymer during the rubber loading produced greater density foams with smaller cell sizes than neat PU, in which the average cell size increased after the weathering. The rubber contributes to enhancing the compressive behavior in the non-exposed samples. After exposure, the results suggest that degradation may act to increase the crosslinking density even with the presented structural changes such as yellowing and voids. Regarding thermal stability, the rubber promotes a slight decay in the ability to resist a heat flow before and after weathering. Still, the char yield increased, showing a possibility of better fire retardancy for composites. FTIR and UV-vis showed chemical structure changes as Photo-Fries network rearrangement, Norrish I random chain scission, and Norrish II ß-scission. Besides, UV-vis revealed the maximum absorbance in the UVB region, showing that the PU reinforced by WTR can be a promising material for civil coatings.


Assuntos
Óleo de Rícino , Poliuretanos , Borracha , Viscosidade
2.
Waste Manag ; 116: 131-139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32799094

RESUMO

Waste tire rubber is produced on a large scale in the automotive industry and is considered difficult to recycle because they have iron, nylon, polyester, and chemical structure formed by cross-links. In this way, the waste is almost always deposited in inappropriate places or incorrectly burned, causing a series of environmental problems. The objective of this work was to analyze the viability of the use of waste tire rubber (5, 10, and 20% m/m) reinforced in polyurethane foam (PU) derived from castor oil to obtain composites, as an alternative for raw materials petrochemical industrial. The materials were characterized by scanning electron microscopy (SEM), optical microscopy (OM), apparent density, contact angle, water absorption, X-ray diffractometry (XRD), spectroscopy infrared (FTIR), thermogravimetry (TGA) techniques, and mechanical tests. The results showed that the residue of the rubber powder reinforced with polyurethane caused an increase in the density of the composites when compared to pure PU, which directly influenced the morphological, physical, thermal, and mechanical properties. This fact occurred because with the insertion of rubber powder in the PU there was a decrease in cell size and increase of pore volume. The TG and DTG analyzes showed that the insertion of the rubber powder improved the thermal stability of the composite when compared to pure PU, as well as impact tests and contact angle.


Assuntos
Óleo de Rícino , Poliuretanos , Reciclagem , Borracha , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA