Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446394

RESUMO

Entamoeba histolytica (E. histolytica) is a parasite in humans that provokes amoebiasis. The most employed drug is metronidazole (MTZ); however, some studies have reported that this drug induces genotoxic effects. Therefore, it is necessary to explore new compounds without toxicity that can eliminate E. histolytica. Flavonoids are polyphenolic compounds that have demonstrated inhibition of growth and dysregulation of amoebic proteins. Despite the knowledge acquired to date, action mechanisms are not completely understood. The present work evaluates the effect of kaempferol against E. histolytica trophozoites and in the interactions with neutrophils from hamster, which is a susceptibility model. Our study demonstrated a significant reduction in the amoebic viability of trophozoites incubated with kaempferol at 150 µM for 90 min. The gene expression analysis showed a significant downregulation of Pr (peroxiredoxin), Rr (rubrerythrin), and TrxR (thioredoxin reductase). In interactions with amoebae and neutrophils for short times, we observed a reduction in ROS (reactive oxygen species), NO (nitric oxide), and MPO (myeloperoxidase) neutrophil activities. In conclusion, we confirmed that kaempferol is an effective drug against E. histolytica through the decrease in E. histolytica antioxidant enzyme expression and a regulator of several neutrophil mechanisms, such as MPO activity and the regulation of ROS and NO.


Assuntos
Amoeba , Entamoeba histolytica , Humanos , Animais , Cricetinae , Neutrófilos/metabolismo , Trofozoítos , Espécies Reativas de Oxigênio/metabolismo , Quempferóis/farmacologia , Quempferóis/metabolismo
2.
Antioxidants (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052563

RESUMO

Acidophilic archaea thrive in anaerobic and aerobic low pH environments (pH < 5) rich in dissolved heavy metals that exacerbate stress caused by the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (·OH) and superoxide (O2-). ROS react with lipids, proteins and nucleic acids causing oxidative stress and damage that can lead to cell death. Herein, genes and mechanisms potentially involved in ROS mitigation are predicted in over 200 genomes of acidophilic archaea with sequenced genomes. These organisms are often be subjected to simultaneous multiple stresses such as high temperature, high salinity, low pH and high heavy metal loads. Some of the topics addressed include: (1) the phylogenomic distribution of these genes and what this can tell us about the evolution of these mechanisms in acidophilic archaea; (2) key differences in genes and mechanisms used by acidophilic versus non-acidophilic archaea and between acidophilic archaea and acidophilic bacteria and (3) how comparative genomic analysis predicts novel genes or pathways involved in oxidative stress responses in archaea and likely horizontal gene transfer (HGT) events.

3.
Front Microbiol ; 7: 1822, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917155

RESUMO

Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the "aerobic-type" lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with "whiffs" of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.

4.
Biochim Biophys Acta ; 1850(6): 1233-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725270

RESUMO

BACKGROUND: Entamoeba histolytica, an intestinal parasite that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. A flavodiiron protein and a rubrerythrin have been characterized in this human pathogen, although their physiological reductants have not been identified. METHODS: The present work deals with biochemical studies performed to reach a better understanding of the kinetic and structural properties of rubredoxin reductase and two ferredoxins from E. histolytica. RESULTS: We complemented the characterization of two different metabolic pathways for O2 and H2O2 detoxification in E. histolytica. We characterized a novel amoebic protein with rubredoxin reductase activity that is able to catalyze the NAD(P)H-dependent reduction of heterologous rubredoxins, amoebic rubrerythrin and flavodiiron protein but not ferredoxins. In addition, the protein exhibited an NAD(P)H oxidase activity, which generates hydrogen peroxide from molecular oxygen. We describe how different ferredoxins were also efficient reducing substrates for both flavodiiron protein and rubrerythrin. CONCLUSIONS: The enzymatic systems herein characterized could contribute to the in vivo detoxification of O2 and H2O2, playing a key role for the parasite defense against reactive oxidant species. GENERAL SIGNIFICANCE: To the best of our knowledge this is the first characterization of a eukaryotic rubredoxin reductase, including a novel kinetic study on ferredoxin-dependent reduction of flavodiiron and rubrerythrin proteins.


Assuntos
Entamoeba histolytica/enzimologia , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clonagem Molecular , Entamoeba histolytica/genética , Hemeritrina/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Oxirredução , Oxigênio/metabolismo , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Rubredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA