Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 49(4): 838-847, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32667626

RESUMO

Abiotic factors can affect plant performance and cause stress, which in turn affects plant-herbivore interactions. The Environmental Stress Hypothesis (ESH) predicts that gall-inducing insect diversity will be greater on host plants that grow in stressful habitats. We tested this hypothesis, considering both historical and ecological scales, using the plant Copaifera langsdorffii Desf. (Fabaceae) as a model because it has a wide geographic distribution and is a super-host of gall-inducing insects. According to the ESH, we predicted that 1) on a historical scale, the diversity of gall-inducing insects will be higher in habitats with greater environmental stress and 2) on an ecological scale, gall-inducing insect diversity will be greater on plants that possess greater levels of foliar sclerophylly. We sampled gall-inducing insects on plants of C. langsdorffii in five sites with different levels of water and soil nutrient availability and separated from each other by a distance of up to 470 km. The composition, richness, and abundance of gall-inducing insects varied among study sites. Plants located in more stressful habitats had higher levels of foliar sclerophylly; but richness and abundance of gall-inducing insects were not affected by host plant sclerophylly. Habitat stress was a good predictor of gall-inducing insect diversity on a regional scale, thus corroborating the first prediction of the ESH. No relationship was found between plant sclerophylly and gall-inducing insect diversity within habitats. Therefore, on a local scale, we did not find support for our second prediction related to the ESH.


Assuntos
Insetos , Árvores , Animais , Biodiversidade , Ecossistema , Herbivoria , Solo
2.
Ecol Evol ; 6(5): 1430-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865953

RESUMO

Studies of leaf traits often focus on tradeoffs between growth and resource conservation, but little is known about variation in the mechanical traits that influence resource conservation. This study investigates how leaf mechanical traits vary across matorral vegetation in central Chile, how they correlate with environmental factors, and how these trends compare at a broader geographic scale. Leaf toughness, strength, stiffness, and associated traits were measured in five matorral types in central Chile, and relationships with soil N and P and climate variables were assessed. Trends with soil and climate were then analyzed across shrubland and woodland in Chile, Western Australia, and New Caledonia. Chilean species varied in leaf mechanics and associated traits, both within and among matorral types, with more species in sclerophyll matorral having strong, tough, and stiff leaves than in arid and littoral matorral. Overall, leaves with high leaf dry mass per area were stiffer, tougher, stronger, thicker, denser, with more fiber, lignin, phenolics and fiber per unit protein and less protein: tannin activity and N and P per mass, forming a broad sclerophylly syndrome. Mechanical traits of matorral species were not correlated with soil N or P, or predictably with climate variables, except flexural stiffness (EI W) which correlated positively with annual reference evapotranspiration (ET 0). However, soil P made strong independent contributions to variation in leaf mechanics across shrublands and woodlands of Chile, Western Australia, and New Caledonia, either separately (strength) or together with ET 0 (toughness) explaining 46-90% of variation. Hence ET 0 was predictive of EI W in Chilean matorral, whereas soil P was highly predictive of variation in leaf strength, and combined with ET 0 was highly predictive of toughness, at a broader geographic scale. The biological basis of these relationships, however, may be complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA