Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Animal Model Exp Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949064

RESUMO

BACKGROUND: Complementary medicine is an interesting field for extracting bioactive compounds from various plant and animal sources. The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leucospilota in an animal model of liver cancer caused by dimethyl nitrosamine (DMN) was studied. METHODS: Wistar female rats were randomly divided into five groups (n = 12): control (intact), positive control (received 1% DMN [10 mg/kg/week, intraperitoneally] for 12 weeks), and three treatment groups (received 50, 100, and 200 mg/kg/day H. leucospilota extract orally for 12 weeks along with intraperitoneal administration of 1% DMN [10 mg/kg/week]). In all groups, ultrasound was performed on the liver every week to check its density. Blood sampling and liver isolation were performed on three occasions, at 4, 8, and 12 weeks, to check liver enzymes and the histopathological condition of the liver tissue (every week, four animals from each group were randomly selected). RESULTS: Liver density changes were evident from the eighth week onward in the positive control group. Histopathological results indicated pathologic changes in the positive control group after 4 weeks. The increase in liver enzymes in the positive control group was significantly different from that in the treatment and control groups. CONCLUSIONS: We demonstrated the hepatoprotective effect of H. leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography. More additional research (in silico or in vitro) is needed to find the exact mechanism and the main biological compound in H. leucospilota.

2.
Fish Shellfish Immunol ; 151: 109745, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960105

RESUMO

Iron homeostasis is vital for the host's defense against pathogenic invasion and the ferritinophagy is a crucial mechanism in maintaining intracellular iron homeostasis by facilitating the degradation and recycling of stored iron. The nuclear receptor coactivator 4 (NCOA4) serves as a ferritinophagy receptor, facilitating the binding and delivery of ferritin to the autophagosome and lysosome. However, NCOA4 of the sea cucumber Apostichopus japonicus (AjNCOA4) has not been reported until now. In this study, we identified and characterized AjNCOA4 in A. japonicus. This gene encodes a polypeptide containing 597 amino acids with an open reading frame of 1794 bp. The inferred amino acid sequence of AjNCOA4 comprises an ARA70 domain. Furthermore, a multiple sequence alignment demonstrated varying degrees of sequence homology between AjNCOA4 from A. japonicus and other NCOA4 orthologs. The phylogenetic tree of NCOA4 correlates with the established timeline of metazoan evolution. Expression analysis revealed that AjNCOA4 is expressed in all tested tissues, including the body wall, muscle, intestine, respiratory tree, and coelomocytes. Following challenge with Vibrio splendidus, the coelomocytes exhibited a significant increase in AjNCOA4 mRNA levels, peaking at 24 h. We successfully obtained recombinant AjNCOA4 protein through prokaryotic expression and prepared a specific polyclonal antibody. Immunofluorescence and co-immunoprecipitation experiments demonstrated an interaction between AjNCOA4 and AjFerritin in coelomocytes. RNA interference-mediated knockdown of AjNCOA4 expression resulted in elevated iron ion levels in coelomocytes. Bacterial stimulation enhanced ferritinophagy in coelomocytes, while knockdown of AjNCOA4 reduced the occurrence of ferritinophagy. These findings suggest that AjNCOA4 modulates ferritinophagy induced by V. splendidus in coelomocytes of A. japonicus.

3.
Food Res Int ; 190: 114603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945572

RESUMO

More than 40 volatile compounds were detected in sea cucumber powder during the processing (through freeze-dried, desalination, supercritical fluid extraction and ultra-micro grinding) by multiple methods including e-nose, GC-IMS and GC-MS. It has been determined that aldehydes are the predominant volatile substances in the original freeze-dried sample, accounting for about 30 % of the total volatile substances. In addition, we established a supercritical fluid extraction strategy that could efficiently remove the aldehydes from the sea cucumber powder. GC-IMS and GC-MS showed that the relative content of aldehydes significantly decreased by 14 % and 28 %, respectively. Quantification of aldehydes using GC-MS showed a significant decrease in octanal from 927 µg/kg to 159 µg/kg. Further investigation combined with OAV analysis showed that 17 volatile substances in the freeze-dried sea cucumber powder were considered to be the predominant volatile compounds (OAV > 1).The primary fishy compounds found in sea cucumber powder were identified as hexanal, octanal, and an unidentified compound using GC-O, which can be effectively removed (OAV can't been estimated) by the supercritical fluid extraction strategy we established.


Assuntos
Cromatografia com Fluido Supercrítico , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Pós , Pepinos-do-Mar , Compostos Orgânicos Voláteis , Cromatografia com Fluido Supercrítico/métodos , Pepinos-do-Mar/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Manipulação de Alimentos/métodos , Liofilização , Aldeídos/análise , Aldeídos/isolamento & purificação , Nariz Eletrônico , Alimentos Marinhos/análise
4.
Food Chem ; 456: 139995, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38852442

RESUMO

The natural flavor of sea cucumber is generally not easily accepted by consumers. In this study, the effect of different cooking conditions on the adsorption of the characteristic flavor of Sichuan pepper by sea cucumber was investigated by response surface methodology, and the optimal cooking conditions were identified. A total of 45 volatiles were identified based on gas chromatography-mass spectrometry, of which 27 were key flavor actives. Low-field nuclear magnetic resonance and textural analysis showed that the addition of Sichuan pepper during the cooking process affected the water migration and the textural properties of sea cucumbers. It was shown that the addition of Sichuan pepper could significantly improve the flavor and other quality characteristics of sea cucumber. This study has important practical guiding significance for the flavor improvement and product innovation of sea cucumber food.

5.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876715

RESUMO

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Assuntos
Polissacarídeos , Pepinos-do-Mar , Pepinos-do-Mar/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade , Sulfatos/química , Anticoagulantes/química , Anticoagulantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38850626

RESUMO

The echinoderm nervous system has been studied as a model for understanding the evolution of the chordate nervous system. Neuronal cells are essential groups that release a 'cocktail' of messenger molecules providing a spectrum of biological actions in the nervous system. Among echinoderms, most evidence on neuronal cell types has been obtained from starfish and sea urchin. In sea cucumbers, most research has focused on the location of neuronal cells, whereas their transcriptional features have rarely been investigated. Here, we observed the ultrastructure of neuronal cells in the sea cucumber, Apostichopus japonicus. The transcriptional profile of neuronal cells from the circumoral nerve ring (CNR) was investigated using single-cell RNA sequencing (scRNA-seq), and a total of six neuronal cell types were identified. 26 neuropeptide precursor genes (NPPs) and 28 G-protein-coupled receptors (GPCR) were expressed in the six neuronal cell types, comprising five NPP/NP-GPCR pairs. Unsupervised pseudotime analysis of neuronal cells showed their different differentiation status. We also located the neuronal cells in the CNR by immunofluorescence (IF) and identified the potential hub genes of key cell populations. This broad resource serves as a valuable support in the development of cell-specific markers for accurate cell-type identification in sea cucumbers. It also contributes to facilitating comparison across species, providing a deeper understanding of the evolutionary processes of neuronal cells.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38906042

RESUMO

Sea cucumber is a valuable seafood product and autolysis is the main concern for the aquaculture industry. This study employed proteomics and transcriptomics to investigate the autolysis mechanism of sea cucumbers. The fresh sea cucumber was exposed to UV light to induce autolysis. The body wall samples were cut off to analyze by proteomics and transcriptomics. The angiotensin-converting enzyme (ACE) inhibitor of teprotide and the activator of imatinib were gastric gavage to live sea cucumbers, respectively, to identify the regulation target. Autolysis occurrence was evaluated by appearance, soluble peptide, and hydroxyproline content. Four gene-protein pairs were ACE, AJAP10923, Heme-binding protein 2-like, and Ficolin-2-like. Only the ACE protein and gene changed synchronously and a significant down-regulation of ACE occurred in the autolysis sea cucumbers. Teprotide led to a 1.58-fold increase in the TCA-soluble protein content and a 1.57-fold increase in hydroxyproline content. No significant differences were observed between imatinib-treated sea cucumbers and fresh ones regarding TCA-soluble protein content or hydroxyproline levels (P > 0.05). ACE inhibitor accelerated the autolysis of sea cucumber, but ACE activator inhibited the autolysis. Therefore, ACE can serve as a regulatory target for autolysis in sea cucumbers.

8.
Int J Biol Macromol ; 269(Pt 2): 131952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692541

RESUMO

Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.


Assuntos
Anticoagulantes , Sulfatos de Condroitina , Fator IXa , Peso Molecular , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/isolamento & purificação , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Fator IXa/metabolismo , Fator IXa/antagonistas & inibidores , Fator IXa/química , Cucumaria/química , Pepinos-do-Mar/química , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Modelos Moleculares
9.
Data Brief ; 54: 110421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690316

RESUMO

The sea cucumber (H. glaberrima) is a species found in the shallow waters near coral reefs and seagrass beds in Puerto Rico. To characterize the microbial taxonomic composition and functional profiles present in the sea cucumber, total DNA was obtained from their intestinal system, fosmid libraries constructed, and subsequent sequencing was performed. The diversity profile displayed that the most predominant domain was Bacteria (76.56 %), followed by Viruses (23.24 %) and Archaea (0.04 %). Within the 11 phyla identified, the most abundant was Proteobacteria (73.16 %), followed by Terrabacteria group (3.20 %) and Fibrobacterota, Chlorobiota, Bacteroidota (FCB) superphylum (1.02 %). The most abundant species were Porvidencia rettgeri (21.77 %), Pseudomonas stutzeri (14.78 %), and Alcaligenes faecalis (5.00 %). The functional profile revealed that the most abundant functions are related to transporters, MISC (miscellaneous information systems), organic nitrogen, energy, and carbon utilization. The data collected in this project on the diversity and functional profiles of the intestinal system of the H. glaberrima provided a detailed view of its microbial ecology. These findings may motivate comparative studies aimed at understanding the role of the microbiome in intestinal regeneration.

10.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674158

RESUMO

With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.


Assuntos
Bactérias , Microbioma Gastrointestinal , Pepinos-do-Mar , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Bactérias/classificação , Bactérias/genética , Pepinos-do-Mar/microbiologia , Pepinos-do-Mar/genética , Aquicultura , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Holothuria/microbiologia , Holothuria/genética , Stichopus/microbiologia , Stichopus/genética , RNA Ribossômico 16S/genética
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609006

RESUMO

Sea cucumber phospholipids, including the plasmalogen (PlsEtn) and plasmanylcholine (PakCho), have been shown to play a regulatory role in lipid metabolism disorders, but their mechanism of action remains unclear. Therefore, high-fat diet (HFD) and palmitic acid were used to establish lipid accumulation models in mice and HepG2 cells, respectively. Results showed that PlsEtn can reduce lipid deposition both in vivo and in vitro. HFD stimulation abnormally activated lipophagy through the phosphorylation of the AMPK/ULK1 pathway. The lipophagy flux monitor revealed abnormalities in the fusion stage of lipophagy. Of note, only PlsEtn stimulated the dynamic remodeling of the autophagosome membrane, which was indicated by the significantly decreased LC3 II/I ratio and p62 level. In all experiments, the effect of PlsEtn was significantly higher than that of PakCho. These findings elucidated the mechanism of PlsEtn in alleviating lipid accumulation, showed that it might be a lipophagy enhancer, and provided new insights into the high-value utilization of sea cucumber as an agricultural resource.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Plasmalogênios , Pepinos-do-Mar , Animais , Dieta Hiperlipídica/efeitos adversos , Plasmalogênios/metabolismo , Pepinos-do-Mar/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Humanos , Células Hep G2 , Masculino , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos
12.
Food Chem ; 449: 139302, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608610

RESUMO

In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.


Assuntos
Temperatura Alta , Pepinos-do-Mar , Animais , Pepinos-do-Mar/química , Aromatizantes/química , Aromatizantes/metabolismo , Hidrolisados de Proteína/química , Paladar , Hidrólise , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ondas Ultrassônicas
13.
J Agric Food Chem ; 72(15): 8798-8804, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38548625

RESUMO

Fibrillin is an important structural protein in connective tissues. The presence of fibrillin in sea cucumber Apostichopus japonicus is still poorly understood, which limits our understanding of the role of fibrillin in the A. japonicus microstructure. The aim of this study was to clarify the presence of fibrillin in the sea cucumber A. japonicus body wall. Herein, the presence of fibrillin in sea cucumber A. japonicus was investigated by utilizing targeted proteomics and visualization strategies. The contents of three different isoforms of fibrillin with high abundance in A. japonicus were determined to be 0.96, 2.54, and 0.15 µg/g (wet base), respectively. The amino acid sequence of fibrillin (GeneBank number: PIK56741.1) that started at position 631 and ended at position 921 was selected for cloning and expressing antigen. An anti-A. japonicus fibrillin antibody with a titer greater than 1:64 000 was successfully obtained. It was observed that the distribution of fibrillin in the A. japonicus body wall was scattered and dispersed in the form of fibril bundles at the microscale. It further observed that fibrillin was present near collagen fibrils and some entangled outside the collagen fibrils at the nanoscale. Moreover, the stoichiometry of the most dominant collagen and fibrillin molecules in A. japonicus was determined to be approximately 250:1. These results contribute to an understanding of the role of fibrillin in the sea cucumber microstructure.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Stichopus/química , Pepinos-do-Mar/metabolismo , Proteômica , Fibrilinas , Colágeno/química
14.
Zookeys ; 1195: 309-335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549917

RESUMO

Deep-sea holothurian specimens were collected during five scientific expeditions (2018-2023) using the submersible vehicle 'Shenhaiyongshi'. Our examination of specimens of Deimatidae from the South China Sea and the Mariana fore-arc area revealed three new species, which were described as Oneirophantaidsseicasp. nov., Oneirophantabrunneannulatasp. nov., and Oneirophantalucernasp. nov. These species were distinguished from each other and from congeners by the arrangement, and number of ventrolateral tube feet and ossicle types. We also reported Oneirophantamutabilismutabilis Théel, 1879 for the first time from the Mariana fore-arc area, and we recorded Deimavalidumvalidum for the second time from the South China Sea. The taxonomy of these new species and new records is discussed, and a phylogenetic analysis based on a concatenated dataset of 16S and COI genes was conducted. Additionally, the inter- and intraspecific genetic divergences we calculated among deimatid species. The results support the assignment of these new species to the genus Oneirophanta and their separation from congeners. A description of the main morphological characters of Oneirophanta species is also provided. The data were collected from geographically diverse areas and suggest that species of Deimatidae were abundant in the Pacific Ocean and occupied a wide range of depths.

15.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540953

RESUMO

To prevent alcoholic liver disease, the addition of bioactive substances to the alcoholic drink Baijiu has been considered a feasible option. In the present study, the hepatoprotective effects of a sea cucumber sulfated polysaccharide (SCSP) isolated from Stichopus japonicu were investigated. Moreover, in order to enhance its solubility in an alcohol solution, it was depolymerized using a photocatalytic reaction, and the photocatalytic degradation products (dSCSPs) with an average molecular weight of less than 2 kDa were studied and compared with SCSP. They were characterized by a series of chemical and spectroscopy methods and the oligosaccharide fragments in the dSCSP were further identified by HPLC-MSn analysis. Then, the in vivo experiment showed that the addition of SCSP or dSCSP to Baijiu could alleviate alcoholic liver injury in mice. Further analysis also revealed their protective effect in reducing oxidative stress damage and their regulation of the metabolism of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the liver. Of note, dSCSP was more effective at reducing the level of malondialdehyde in the liver. These findings indicate that the addition of sea cucumber polysaccharide or its low-molecular-weight derivative in Baijiu has the potential to alleviate alcoholic liver injury.

16.
Int J Biol Macromol ; 266(Pt 2): 131090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537858

RESUMO

In this study, modified sea Cucumber Peptides (SCP) were prepared by reacting with xylooligosaccharide (XOS) and alginate oligosaccharides (AOS) via glycation. Free radical inhibitory and inhibition of oxidative stress of modified SCP was evaluated using human hepatocellular carcinoma (HepG2) cells and zebrafish embryos. LC-MS analysis revealed that SCPs mainly consist of 40 active peptides, with an average molecular weight of 1122.168 Da and an average length of 11 amino acid residues. For amino acid composition, L-Asparagine, L-Methionine, and L-Aspartic Acid were dominant amino acids in SCP. The result showed that the antioxidant ability of SCP against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), superoxide anion radical (O-2), and Hydroxyl Radical (OH) was significantly improved after modification. In HepG2 cells, the modified SCP showed stronger protection than native SCP native against H2O2-induced oxidative stress by enhancing cell viability and reducing radical oxygen species (ROS) generation. The inhibition effect of SCP was increased after modification with XOS and AOS by 13 % and 19 % respectively. Further studies displayed that the activity of antioxidative enzymes, including Superoxide dismutase (SOD), Glutathione Peroxidase (GPx), and catalase (CAT), was remarkably enhanced, whereas malondialdehyde (MDA) level was reduced compared with native SCP and H2O2-treated groups, thus, improving the intracellular antioxidant defenses. The gene expression analysis showed that the mechanism underlying the modified SCP protective effect may be linked with the capability to regulate Nuclear factor-erythroid factor 2-related factor 2 (NRF2) gene expression. The protective effect of modified SCP against H2O2 in vitro was confirmed in vivo by reduced toxicity in zebrafish embryos via improvement of mortality rate, hatching rate, heart beating rate, and deformities of the zebrafish model. However, SCPAOS conjugate displayed greater antioxidant potentials compared to the SCPXOS, the different effects between SCPAOS and SCPXOS could be due to their different antioxidant activity. Thus, modified SCP could be potentially used as a novel nutraceutical in the preparation of anti-aging food and medicine.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Estresse Oxidativo , Peptídeos , Pepinos-do-Mar , Peixe-Zebra , Animais , Células Hep G2 , Peróxido de Hidrogênio/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pepinos-do-Mar/química , Peptídeos/farmacologia , Peptídeos/química , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Catalase/metabolismo
17.
Ecotoxicol Environ Saf ; 273: 116099, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422788

RESUMO

Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Sulfametoxazol/toxicidade , Sulfametoxazol/metabolismo , Metabolômica , Bactérias/genética
18.
J Asian Nat Prod Res ; 26(6): 681-689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329449

RESUMO

Sea cucumber-derived fungi have attracted much attention due to their capacity to produce an incredible variety of secondary metabolites. Genome-wide information on Aspergillus micronesiensis H39 obtained using third-generation sequencing technology (PacBio-SMRT) showed that the strain contains nonribosomal peptide synthetase (NRPS)-like gene clusters, which aroused our interest in mining its secondary metabolites. 11 known compounds (1-11), including two γ-aromatic butenolides (γ-AB) and five cytochalasans, were isolated from A. micronesiensis H39. The structures of the compounds were determined by NMR and ESIMS, and comparison with those reported in the literature. From the perspective of biogenetic origins, the γ-butyrolactone core of compounds 1 and 2 was assembled by NRPS-like enzyme. All of the obtained compounds showed no inhibitory activity against drug-resistant bacteria and fungi, as well as compounds 1 and 2 had no anti-angiogenic activity against zebrafish.


Assuntos
4-Butirolactona , 4-Butirolactona/análogos & derivados , Aspergillus , Família Multigênica , Peptídeo Sintases , Peptídeo Sintases/genética , Estrutura Molecular , 4-Butirolactona/farmacologia , 4-Butirolactona/química , Aspergillus/enzimologia , Aspergillus/química , Aspergillus/genética , Animais , Peixe-Zebra
19.
Carbohydr Res ; 536: 109052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38325067

RESUMO

The elucidation of the precise structure of fucan sulfate is essential for understanding the structure-activity relationship and promoting potential biomedical applications. In this work, the structure of a distinct fucan sulfate fraction V (PmFS in Ref 15 and FSV in Ref 16 → PFV) from Pattalus mollis was investigated using an oligosaccharide mapping approach. Six size-homogeneous fractions were purified from the mild acid hydrolyzed PFV and identified as fucitols, disaccharides and trisaccharides by 1D/2D NMR and MS analysis. Significantly, the sulfation pattern, glycosidic linkages, and sequences of all the oligosaccharides were unambiguously identified. The common 2-desulfation of the reducing end residue of the oligosaccharides was observed. Overall, the backbone of PFV was composed of L-Fuc2S (major) and L-Fuc3S (minor) linked by α1,4 glycosidic bonds. Importantly, the branches contain both monosaccharide and disaccharide linked to the backbone by α1,3 glycosidic linkages. Thus, the tentative structure of natural PFV was shown to be {-(R-α1,3)-L-Fuc2S-α1,4-(L-Fuc2S/3S-α1,4)x-}n, where R is L-Fuc(2S)4S-α1,3/4-L-Fuc4S(0S)- or L-Fuc(2S)4S-. Our results provide insight into the heterogeneous structure of the fucan sulfate found in sea cucumbers. Additionally, PFV and its fractions showed strong anticoagulant and anti-iXase activities, which may be related to the distinct structure of PFV.


Assuntos
Polissacarídeos , Pepinos-do-Mar , Animais , Polissacarídeos/química , Oligossacarídeos/química , Anticoagulantes/química , Pepinos-do-Mar/química
20.
Evodevo ; 15(1): 3, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368336

RESUMO

A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...