Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 81: 102594, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943830

RESUMO

The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.

2.
Elife ; 132024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899444

RESUMO

Comprehensive biodiversity data is crucial for ecosystem protection. The Biome mobile app, launched in Japan, efficiently gathers species observations from the public using species identification algorithms and gamification elements. The app has amassed >6 million observations since 2019. Nonetheless, community-sourced data may exhibit spatial and taxonomic biases. Species distribution models (SDMs) estimate species distribution while accommodating such bias. Here, we investigated the quality of Biome data and its impact on SDM performance. Species identification accuracy exceeds 95% for birds, reptiles, mammals, and amphibians, but seed plants, molluscs, and fishes scored below 90%. Our SDMs for 132 terrestrial plants and animals across Japan revealed that incorporating Biome data into traditional survey data improved accuracy. For endangered species, traditional survey data required >2000 records for accurate models (Boyce index ≥ 0.9), while blending the two data sources reduced this to around 300. The uniform coverage of urban-natural gradients by Biome data, compared to traditional data biased towards natural areas, may explain this improvement. Combining multiple data sources better estimates species distributions, aiding in protected area designation and ecosystem service assessment. Establishing a platform for accumulating community-sourced distribution data will contribute to conserving and monitoring natural ecosystems.


The internet has allowed people to share their experiences through images, videos or audio recordings. This has led to the creation of online communities around a variety of topics, including biodiversity. In 2019, a smartphone app, called Biome, was created to fuel biodiversity engagement by making wildlife surveying an easy and fun activity via gamification and assisted species identification through image recognition and ecological analyses. These types of observations are essential for understanding biological communities and species habitats, and they can indicate where and when species occur. Across Japan, Biome has gathered over 6.5 million observations of different species. For biologists, this type of data is extremely useful because it is continuous and enables advanced statistical estimations of species distributions. The fact that the approach is enjoyable to the user also means more people are willing to participate, lowering the barriers to collecting data about biodiversity loss. However, questions remain regarding whether community-sourced data is robust enough for scientific purposes. To address this, Atsumi et al. investigated the quality of occurrence data collected in Biome. The researchers found that community identification of birds, reptiles, mammals and amphibians all exceeded 95% in accuracy. However, the accuracy fell for harder-to-judge seed plants, molluscs and fish species, ranging below 90%. Atsumi et al. also compared how estimated distributions of each species changed when only scientific data was used, versus when it was combined with community data. To perform this analysis, the scientists recognized variations in observation efforts across different locations and individuals and adjusted for these biases in their estimations. They found that adding community-sourced data significantly improved the accuracy of species distribution estimations, including endangered species. Atsumi et al. demonstrate that Biome data is useful when deciding which areas to designate as protected in terms of biodiversity. Additionally, these data can provide guidance for stakeholder-informed ecosystem service assessments. The element of rapid and reliable data collection can contribute to growing positive attitudes towards nature and biodiversity, The platform's community-driven nature also indicates an increase in biodiversity awareness and may link to crafting informative socio-environmental policy commitments.


Assuntos
Biodiversidade , Smartphone , Animais , Japão , Conservação dos Recursos Naturais/métodos , Aplicativos Móveis , Ecossistema , Plantas
3.
Ecol Evol ; 14(2): e10884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343575

RESUMO

Differences in the number of alien plant species in different locations may reflect climatic and other controls that similarly affect native species and/or propagule pressure accompanied with delayed spread from the point of introduction. We set out to examine these alternatives for Himalayan plants, in a phylogenetic framework. We build a database of alien plant distributions for the Himalaya. Focusing on the well-documented regions of Jammu & Kashmir (west) and Bhutan (east) we compare alien and native species for (1) richness patterns, (2) degree of phylogenetic clustering, (3) the extent to which species-poor regions are subsets of species-rich regions and (4) continental and climatic affinities/source. We document 1470 alien species (at least 600 naturalised), which comprise ~14% of the vascular plants known from the Himalaya. Alien plant species with tropical affinities decline in richness with elevation and species at high elevations form a subset of those at lower elevations, supporting location of introduction as an important driver of alien plant richness patterns. Separately, elevations which are especially rich in native plant species are also rich in alien plant species, suggesting an important role for climate (high productivity) in determining both native and alien richness. We find no support for the proposition that variance in human disturbance or numbers of native species correlate with alien distributions. Results imply an ongoing expansion of alien species from low elevation sources, some of which are highly invasive.

4.
Plant Divers ; 46(1): 59-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343601

RESUMO

Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota. The Qinghai-Tibet Plateau (QTP) harbors an exceptionally diverse flora, however, a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions. In this study, we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau. We also examined the relationships between multifaceted beta diversity, geographical distance, and climatic difference, and evaluated the relative importance of various factors (i.e., climate, topography and history) in shaping patterns of beta diversity. Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP. We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference. The environmental factors that contributed most to these patterns of beta diversity include annual precipitation, mean annual temperature, climatic gradients and climatic instability. Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP. Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.

5.
Biochem Genet ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801144

RESUMO

Caffeic acid transferase (COMT) is a key enzyme in the lignin and melatonin synthesis pathways and plays an important role in plant growth and development. All seed plants have two characteristics: they have vascular tissues, phloem, and xylem, and they can produce and reproduce seeds. In order to understand the distribution and evolution of COMTs in seed plants, we performed physicochemical property analysis, subcellular localization, phylogenetic analysis, conserved motif analysis, and protein interaction network analysis of 44 COMT homologs from 26 seed plants through in silico. The results showed that in seed plants, the structure of COMT genes tends to be stable in different plant taxa, while the relationship between the chromosomal positions of different COMT genes in the same plant was more intricate. The conserved distribution of COMT in seed plants reflected its highly specialized function.

6.
Plants (Basel) ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687307

RESUMO

Floristic regions, conventionally established using species distribution patterns, have often overlooked the phylogenetic relationships among taxa. However, how phylogenetic relationships influence the historical interconnections within and among biogeographic regions remains inadequately understood. In this research, we compiled distribution data for seed plants in Gansu, a region of significant biogeographic diversity located in northwestern China.We proposed a novel framework for floristic regions within Gansu, integrating distribution data and phylogenetic relationships of genera-level native seed plants, aiming to explore the relationship between phylogenetic relatedness, taxonomic composition, and regional phylogenetic delineation. We found that (1) phylogenetic relatedness was strongly correlated with the taxonomic composition among floras in Gansu. (2) The southeastern Gansu region showed the lowest level of spatial turnover in both phylogenetic relationships and the taxonomic composition of floristic assemblages across the Gansu region. (3) Null model analyses indicated nonrandom phylogenetic structure across the region, where most areas showed higher phylogenetic turnover than expected given the underlying taxonomic composition between sites. (4) Our results demonstrated a consistent pattern across various regionalization schemes and highlighted the preference for employing the phylogenetic dissimilarity approach in biogeographical regionalization investigations. (5) Employing the phylogenetic dissimilarity approach, we identified nine distinct floristic regions in Gansu that are categorized into two broader geographical units, namely the northwest and southeast. (6) Based on the phylogenetic graphic regions of China across this area.

7.
New Phytol ; 240(4): 1636-1646, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37496281

RESUMO

Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods. Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called 'hotspots') do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD. Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub-)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential. Safeguarding PD in the Anthropocene (including the protection of some comparatively species-poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Filogenia , Conservação dos Recursos Naturais/métodos , Plantas , Ecossistema
8.
Am J Bot ; 110(7): e16182, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272508

RESUMO

PREMISE: In recent years, Doyleales have played an important role in the discussion and exploration of seed plant relationships and the origin of angiosperms. This order comprises a diversity of recently described genera with cupule-bearing compound ovulate cones recovered from Early Cretaceous deposits in North America and Asia. Their relatively late appearance in the fossil record, stratigraphically near the appearance of angiosperms in the Early Cretaceous, has been noteworthy. Here, we report a new genus of Doyleales, Zirabia gen. nov. from the Early Jurassic of Iran, that was originally described as the ginkgophyte Karkenia. METHODS: We reinvestigated material previously assigned to Karkenia cylindrica from the Lower Jurassic of the Zirab locality, Alborz Mountains, northern Iran. RESULTS: The studied specimen features a main axis bearing helically to irregularly arranged bract-cupule complexes, each composed by a long laminar bract subtending and sheathing a cupule stalk that bears a single-seeded cupule with a dorsal protrusion. The morphological features of this taxon do not conform with those of Karkenia, and suggest affinities with Doyleales rather than Ginkgoales. Within Doyleales, this fossil has a unique combination of characters indicating that it is a new genus within the order; thus, a new combination is erected, Zirabia cylindrica. CONCLUSIONS: Our results indicate that Doyleales is significantly older than previously thought, with their stratigraphic range now extending from the Lower Jurassic to the Cretaceous. The Early Jurassic occurrence of Doyleales provides important data on the emergence of seed-enclosing structures seen in seed plants throughout the Mesozoic.


Assuntos
Evolução Biológica , Magnoliopsida , Sementes/anatomia & histologia , Ginkgo biloba , Fósseis
9.
Plant Divers ; 45(1): 20-26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36876310

RESUMO

The tropical Asian and Australasian floras have a close relationship, and is a vital distribution pattern of seed plants worldwide. As estimated, more than 81 families and 225 genera of seed plants distributed between tropical Asia and Australasia. However, the evolutionary dynamics of two floras were still vague. Here, a total of 29 plant lineages, represented the main clades of seed plants and different habits, were selected to investigate the biotic interchange between tropical Asia and Australasia by integrated dated phylogenies, biogeography, and ancestral state reconstructions. Our statistics indicated that 68 migrations have occurred between tropical Asia and Australasia since the middle Eocene except terminal migrations, and the migration events from tropical Asia to Australasia is more than 2 times of the reverse. Only 12 migrations occurred before 15 Ma, whereas the remaining 56 migrations occurred after 15 Ma. Maximal number of potential dispersal events (MDE) analysis also shows obvious asymmetry, with southward migration as the main feature, and indicates the climax of bi-directional migrations occurred after 15 Ma. We speculate that the formation of island chains after the Australian-Sundaland collision and climate changes have driven seed plant migrations since the middle Miocene. Furthermore, biotic dispersal and stable habitat may be crucial for floristic interchange between tropical Asia and Australasia.

10.
New Phytol ; 238(4): 1695-1710, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943236

RESUMO

The Cycadales are an ancient and charismatic group of seed plants. However, their morphological evolution in deep time is poorly understood. While molecular divergence time analyses estimate a Cretaceous origin for most major living cycad clades, much of the extant diversity is inferred to be a result of Neogene diversifications. This leads to long branches throughout the cycadalean phylogeny that, with few exceptions, have yet to be rectified by unequivocal fossil cycads. We report a permineralized pollen cone from the Campanian Holz Shale located in Silverado Canyon, CA, USA (c. 80 million yr ago). This fossil was studied via serial sectioning, SEM, 3D reconstruction and phylogenetic analyses. Microsporophyll and pollen morphology indicate this cone is assignable to Skyttegaardia, a recently described genus based on disarticulated lignitized microsporophylls from the Early Cretaceous of Denmark. Data from this new species, including a simple cone architecture, anatomical details and vasculature organization, indicate cycadalean affinities for Skyttegaardia. Phylogenetic analyses support this assignment and recover Skyttegaardia as crown-group Cycadales, nested within Zamiaceae. Our findings support a Cretaceous diversification for crown-group Zamiaceae, which included the evolution of morphological divergent extinct taxa with unique traits that have yet to be widely identified in the fossil record.


Assuntos
Cycadopsida , Sementes , Filogenia , Fatores de Tempo , Pólen , Fósseis , Evolução Biológica
11.
Front Bioeng Biotechnol ; 10: 930161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928959

RESUMO

Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis. Finally, in silico docking determined their binding affinities to target myeloperoxidase enzymes. Ten dominant mycoendophytes were isolated from different black seed plants. Three isolates were then selected based on high antiradical potency and further identified by ITS ribosomal gene sequencing. Those isolated were Aspergillus niger TU 62, Chaetomium madrasense AUMC14830, and Rhizopus oryzae AUMC14823. Nigella sativa seeds and their corresponding endophyte A. niger had the highest content of phenolics in their n-butanol extracts (28.50 and 24.43 mg/g), flavonoids (15.02 and 11.45 mg/g), and antioxidant activities (90.48 and 81.48%), respectively, followed by Dodonaea viscosa and Portulaca oleracea along with their mycoendophytic R. oryzae and C. madrasense. Significant positive correlations were found between total phenolics, flavonoids, and the antioxidant activities of different tested extracts. The n-butanol extracts of both black seeds and their derived mycoendophytes showed reasonable IC50 values (0.81-1.44 mg/ml) compared to the control with significant correlations among their phytochemical contents. Overall, seventeen standard phenolics and flavonoids were used, and the compounds were detected in different degrees of existence and concentration in the examined extracts through HPLC analysis. Moreover, the investigation of the molecular simulation results of detected compounds against the myeloperoxidase enzyme revealed that, as a targeted antioxidant, rutin possessed a high affinity (-15.3184 kcal/mol) as an inhibitor. Taken together, the black seeds and their derived mycoendophytes are promising bio-prospects for the broad industrial sector of antioxidants with several valuable potential pharmaceutical and nutritional applications.

12.
Genes (Basel) ; 13(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741799

RESUMO

There is a paradox in the plant mitochondrial genome, that is, the genic region evolves slowly while the intergenic region evolves rapidly. Thus, the intergenic regions of the plant mitochondrial genome are difficult to align across different species, even in closely related species. Here, to character the mechanism of this paradox, we identified interspecific variations in the Ginkgo biloba, Oryza sativa, and Arabidopsis thaliana mitochondrial and plastid genome at a genome-wide level. The substitution rate of synonymous sites in genic regions was similar to the substitution rate of intergenic regions, while the substitution rate of nonsynonymous sites in genic regions was lower than that in intergenic regions, suggesting the mutation inputs were the same among different categories within the organelle genome, but the selection pressure varied. The substitution rate of single-copy regions was higher than that of IR (inverted repeats) in the plastid genome at an intraspecific level. The substitution rate of single-copy regions was higher than that of repeats in the G. biloba and A. thaliana mitochondrial genomes, but lower in that of O. sativa. This difference may be related to the length and distribution of repeats. Copy number variations that existed in the G. biloba and O. sativa mitochondrial genomes were confirmed. This study reveals the intraspecific variation pattern of organelle genomes at a genome-wide level, and that copy number variations were common in plant mitochondrial genomes.


Assuntos
Arabidopsis , Genoma Mitocondrial , Arabidopsis/genética , Variações do Número de Cópias de DNA , DNA Intergênico , Mutação , Filogenia , Sementes
13.
Natl Sci Rev ; 9(4): nwab196, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386924

RESUMO

The earliest ovules in the Late Devonian (Famennian) are surrounded by a cupule that is involved in both protection and pollination, and generally have free integumentary lobes. Here we report a new taxon from the Famennian of China, Guazia dongzhiensis gen. et sp. nov. The terminally borne ovule is apparently acupulate (without cupule) and has four radially arranged wing-like integumentary lobes that are extensively fused, and folded lengthwise and inwards. Guazia provides evidence that not all Devonian seeds possess a cupule and it increases their diversity in integumentary lobes. This genus also suggests that the integuments develop new functions, probably including wind dispersal at the expense of the cupules.

14.
Plant Divers ; 44(1): 30-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35281127

RESUMO

Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology. The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues. However, most previous studies have focused on the entire Qinghai-Tibet Plateau, leaving independent physical geographic subunits in the region less well understood. We studied the current plant diversity of the Kunlun Mountains, an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau. We integrated measures of species distribution, geological history, and phylogeography, and analyzed the taxonomic richness, phylogenetic diversity, and community phylogenetic structure of the current plant diversity in the area. The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains. The taxonomic richness, phylogenetic diversity, and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation, particularly the southeastern regions. The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization. The Hengduan Mountains, a biodiversity hotspot, is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary. The net relatedness index indicated that 20 of the 28 communities examined were phylogenetically dispersed, while the remaining communities were phylogenetically clustered. The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered. These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering may play an important role in this ecological process.

15.
Plant J ; 110(5): 1382-1396, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306706

RESUMO

The exocyst complex is an octameric evolutionarily conserved tethering complex engaged in the regulation of polarized secretion in eukaryotic cells. Here, we focus on the systematic comparison of two isoforms of the SEC15 exocyst subunit, SEC15a and SEC15b. We infer that SEC15 gene duplication and diversification occurred in the common ancestor of seed plants (Spermatophytes). In Arabidopsis, SEC15a represents the main SEC15 isoform in the male gametophyte, and localizes to the pollen tube tip at the plasma membrane. Although pollen tubes of sec15a mutants are impaired, sporophytes show no phenotypic deviations. Conversely, SEC15b is the dominant isoform in the sporophyte and localizes to the plasma membrane in root and leaf cells. Loss-of-function sec15b mutants exhibit retarded elongation of hypocotyls and root hairs, a loss of apical dominance, dwarfed plant stature and reduced seed coat mucilage formation. Surprisingly, the sec15b mutants also exhibit compromised pollen tube elongation in vitro, despite its very low expression in pollen, suggesting a non-redundant role for the SEC15b isoform there. In pollen tubes, SEC15b localizes to distinct cytoplasmic structures. Reciprocally to this, SEC15a also functions in the sporophyte, where it accumulates at plasmodesmata. Importantly, although overexpressed SEC15a could fully complement the sec15b phenotypic deviations in the sporophyte, the pollen-specific overexpression of SEC15b was unable to fully compensate for the loss of SEC15a function in pollen. We conclude that the SEC15a and SEC15b isoforms evolved in seed plants, with SEC15a functioning mostly in pollen and SEC15b functioning mostly in the sporophyte.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sementes/genética , Sementes/metabolismo
16.
Ecol Evol ; 12(1): e8493, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136553

RESUMO

Large-scale patterns of biodiversity and formation have garnered increasing attention in biogeography and macroecology. The Qinghai-Tibet Plateau (QTP) is an ideal area for exploring these issues. However, the QTP consists of multiple geographic subunits, which are understudied. The Kunlun Mountains is a geographical subunit situated in the northern edge of the QTP, in northwest China. The diversity pattern, community phylogenetic structures, and biogeographical roles of the current flora of the Kunlun Mountains were analyzed by collecting and integrating plant distribution, regional geological evolution, and phylogeography. A total of 1911 species, 397 genera, and 75 families present on the Kunlun Mountains, of which 29.8% of the seed plants were endemic to China. The mean divergence time (MDT) of the Kunlun Mountains flora was in the early Miocene (19.40 Ma). Analysis of plant diversity and MDT indicated that the eastern regions of the Kunlun Mountains were the center of species richness, endemic taxa, and ancient taxa. Geographical origins analysis showed that the Kunlun Mountains flora was diverse and that numerous clades were from East Asia and Tethyan. Analysis of geographical origins and geological history together highlighted that the extant biodiversity on the Kunlun Mountains appeared through species recolonization after climatic fluctuations and glaciations during the Quaternary. The nearest taxon index speculated that habitat filtering was the most important driving force for biodiversity patterns. These results suggest that the biogeographical roles of the Kunlun Mountains are corridor and sink, and the corresponding key processes are species extinction and immigration. The Kunlun Mountains also form a barrier, representing a boundary among multiple floras, and convert the Qinghai-Tibet Plateau into a relatively closed geographical unit.

17.
Methods Mol Biol ; 2368: 43-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647246

RESUMO

Tropisms are among the most important growth responses for plant adaptation to the surrounding environment. One of the most common tropisms is root gravitropism. Root gravitropism enables the plant to anchor securely to the soil enabling the absorption of water and nutrients. Most of the knowledge related to the plant gravitropism has been acquired from the flowering plants, due to limited research in non-seed plants. Limited research on non-seed plants is due in large part to the lack of standard research methods. Here, we describe the experimental methods to evaluate gravitropism in representative non-seed plant species, including the non-vascular plant moss Physcomitrium patens, the early diverging extant vascular plant lycophyte Selaginella moellendorffii and fern Ceratopteris richardii. In addition, we introduce the methods used for statistical analysis of the root gravitropism in non-seed plant species.


Assuntos
Gravitropismo , Bryopsida , Plantas , Pteridaceae
18.
Front Plant Sci ; 12: 731694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777416

RESUMO

Green leaf volatiles (GLVs) consist of six-carbon volatile aldehydes, alcohols, and their esters. They are formed from polyunsaturated fatty acids and are involved in the defense of plants against herbivores and pathogens. GLVs generally have low concentrations in intact healthy plant tissues, but the biosynthetic pathway to form GLVs is quickly activated by mechanical damage to tissues, an event called the GLV-burst. Most seed plants have the ability to implement GLV-burst; however, this potential in non-seed plants has not been extensively researched. In this study, we examined the GLV-burst capacity of monilophytes, lycophytes, and bryophytes, and confirmed that monilophytes and lycophytes showed substantial GLV-burst ability, while bryophytes did not, with a few exceptions. When the genome sequence of a model lycophyte, Selaginella moellendorffii was reviewed, 10 genes were found that showed high similarity with the non-canonical cytochrome P450 enzymes, CYP74s, specialized in oxylipin formation. Recombinant proteins expressed with Escherichia coli showed that one of them had the ability to encode allene oxide synthase, and another encoded hydroperoxide lyase (HPL), preferring linolenic acid 13-hydroperoxide, and it was inferred that this gene was responsible for GLV-burst in S. moellendorffii. Based on the phylogenetic tree constructed with CYP74s of non-seed and seed plants, we hypothesized that HPL was acquired independently in the lycophyte and seed plants through diversification of CYP74 genes.

19.
Natl Sci Rev ; 8(4): nwaa105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34691607

RESUMO

To evaluate the phylogenetic patterns of the distribution and evolution of plant secondary metabolites (PSMs), we selected 8 classes of PSMs and mapped them onto an updated phylogenetic tree including 437 families of seed plants. A significant phylogenetic signal was detected in 17 of the 18 tested seed-plant clades for at least 1 of the 8 PSM classes using the D statistic. The phylogenetic signal, nevertheless, indicated weak clustering of PSMs compared to a random distribution across all seed plants. The observed signal suggests strong diversifying selection during seed-plant evolution and/or relatively weak evolutionary constraints on the evolution of PSMs. In the survey of the current phylogenetic distributions of PSMs, we found that multiple origins of PSM biosynthesis due to external selective forces for diverse genetic pathways may have played important roles. In contrast, a single origin of PSMs seems rather uncommon. The distribution patterns for PSMs observed in this study may also be useful in the search for natural compounds for medicinal purposes.

20.
New Phytol ; 232(3): 1424-1435, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33932292

RESUMO

Identifying the contours and correlates of species turnover is central to understanding the nature of biogeographical regions. The Hengduan Mountains region of south-central China (HMR) is well known for its high diversity of plants, but its boundaries and internal floristic structure are poorly understood, especially in relation to geographical and environmental factors. With data on occurrences and elevational ranges of seed plants across the HMR and adjacent areas of the greater Qinghai-Tibet Plateau, we identified motifs (distinct species assemblages) by Grade of Membership models, and characterized relative contributions of geography, elevation, and climate to their spatial patterns. Motifs segregate primarily by latitude, elevation, and correlated environmental variables, most sharply across the tropical-temperate divide. Secondarily, they segregate by longitude and geographical features, and reveal a novel divide across the Jinsha River. A core set of motifs corresponds to previous delineations of the HMR. The HMR biodiversity hotspot is more a mosaic of floristic elements than a cohesive entity. Grade of Membership models effectively reveal the geographical contours of biotic structure, and are a valuable new tool for biogeographical analysis.


Assuntos
Biodiversidade , Plantas , Clima , Geografia , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...