Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.792
Filtrar
1.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973716

RESUMO

The interaction of liquid water with hydrophobic surfaces is ubiquitous in life and technology. Yet, the molecular structure of interfacial liquid water on these surfaces is not known. By using a 3D atomic force microscope, we characterize with angstrom resolution the structure of interfacial liquid water on hydrophobic and hydrophilic silica surfaces. The combination of 3D AFM images and molecular dynamics simulations reveals that next to a hydrophobic silica surface, there is a 1.2 nm region characterized by a very low density of water. In contrast, the 3D AFM images obtained of a hydrophilic silica surface reveal the presence of hydration layers next to the surface. The gap observed on hydrophobic silica surfaces is filled with two-to-three layers of straight-chain alkanes. We developed a 2D Ising model that explains the formation of a continuous hydrocarbon layer on hydrophobic silica surfaces.

2.
Angew Chem Int Ed Engl ; : e202407228, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975669

RESUMO

Three functionalized thienopyrazines (TPs), TP-MN (1), TP-CA (2), and TPT-MN (3) were designed and synthesized as self-assembled monolayers (SAMs) deposited on the NiOx film for tin-perovskite solar cells (TPSCs). Thermal, optical, electrochemical, morphological, crystallinity, hole mobility, and charge recombination properties, as well as DFT-derived energy levels with electrostatic surface potential mapping of these SAMs, have been thoroughly investigated and discussed. The structure of the TP-MN (1) single crystal was successfully grown and analyzed to support the uniform SAM produced on the ITO/NiOx substrate. When we used NiOx as HTM in TPSC, the device showed poor performance. To improve the efficiency of TPSC, we utilized a combination of new organic SAMs with NiOx HTM, the TPSC device exhibited the highest PCE of 7.7% for TP-MN (1). Hence, the designed NiOx/TP-MN (1) acts as a new model system for the development of efficient SAM-based TPSC. To the best of our knowledge, the combination of organic SAMs with anchoring CN/CN or CN/COOH groups, and NiOx HTM for TPSC has never been reported elsewhere. The TPSC device based on the NiOx/TP-MN bilayer exhibits great enduring stability for performance, retaining ~80% of its original value for shelf storage over 4000 h.

3.
Sci Rep ; 14(1): 14998, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951136

RESUMO

Herein, additive manufacturing, which is extremely promising in different sectors, has been adopted in the electrical energy storage field to fabricate efficient materials for supercapacitor applications. In particular, Al2O3-, steel-, and Cu-based microparticles have been used for the realization of 3D self-assembling materials covered with reduced graphene oxide to be processed through additive manufacturing. Functionalization of the particles with amino groups and a subsequent "self-assembly" step with graphene oxide, which was contextually partially reduced to rGO, was carried out. To further improve the electrical conductivity and AM processability, the composites were coated with a polyaniline-dodecylbenzene sulfonic acid complex and further blended with PLA. Afterward, they were extruded in the form of filaments, printed through the fused deposition modeling technique, and assembled into symmetrical solid-state devices. Electrochemical tests showed a maximum mass capacitance of 163 F/g, a maximum energy density of 15 Wh/Kg at 10 A/g, as well as good durability (85% capacitance retention within 5000 cycles) proving the effectiveness of the preparation and the efficiency of the as-manufactured composites.

4.
Int J Biol Macromol ; : 133595, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960253

RESUMO

Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.

5.
Chemistry ; : e202401885, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977428

RESUMO

The understanding of supramolecular chirality in self-assembled molecular networks (SAMNs) on surfaces generates a lot of interest because of its relation to the production of chiral sensors, reactors, and catalysts. We herein report the adsorption of a prochiral solvent molecule in porous SAMNs formed by a chiral dehydrobenzo[12]annulene (cDBA) derivative. Through the prochirality recognition of a solvent molecule, the supramolecular chirality of the SAMN is switched: the cDBA exclusively forms a counter-clockwise pore through co-adsorption of the solvent molecule in prochiral 1,2,4-trichlorobenzene, while in 1-phenyloctane it produces the opposite chiral, clockwise pore. The prochirality recognition of the solvent molecule in the chiral SAMN pores is attributed to the adaptable conformational changes of the chiral chains of the cDBA molecule.

6.
ACS Appl Mater Interfaces ; 16(26): 33838-33845, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961574

RESUMO

Perovskite photodetectors, devices that convert light to electricity, require good extraction and low noise levels to maximize the signal-to-noise ratio. Self-assembling monolayers (SAMs) have been shown to be effective hole transport materials thanks to their atomic layer thickness, transparency, and energetic alignment with the valence band of the perovskite. While efforts are being made to reduce noise levels via the active layer, little has been done to reduce noise via SAM interfacial engineering. Herein, we report hybrid perovskite photodetectors with high detectivity by blending two different SAMs (2-PACz and Me-4PACz). We find that with a 1:1 2-PACz:Me-4PACz ratio (by weight), the devices achieved a low noise of 1 × 10-13 A Hz-1/2, a high responsivity of 0.41 A W-1 at 710 nm, and a specific detectivity of 6.4 × 1011 Jones at 710 nm at -0.5 V, outperforming its two counterparts. In addition to the improved noise levels in these devices, impedance spectroscopy revealed that higher recombination lifetimes of 0.85 µs were achieved for the 1:1 2-PACz:Me-4PACz-based photodetectors, confirming their low defect density.

7.
Bioelectrochemistry ; 159: 108757, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851026

RESUMO

The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration. Real-time monitoring via quartz crystal microbalance, coupled with characterization using surface-enhanced infrared absorption spectroscopy and electrochemical impedance spectroscopy, provided comprehensive insights into each manufacturing phase. The resulting lipid layer, along with transmembrane pores formed by gramicidin A, exhibited robust stability. Electrochemical impedance spectroscopy analysis confirmed membrane integrity, successful pore formation, and consistent channel density. Notably, gramicidin A demonstrated sustained functionality as an ion channel upon reconstitution, with its functionality being effectively blocked and inhibited in the presence of calcium ions. These findings mark significant strides in developing intricate biodegradable nanomaterials with promising applications in biomedicine.


Assuntos
Gramicidina , Bicamadas Lipídicas , Poliésteres , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Gramicidina/química , Gramicidina/metabolismo , Poliésteres/química , Colesterol/química , Técnicas de Microbalança de Cristal de Quartzo , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Espectroscopia Dielétrica
8.
Talanta ; 277: 126415, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878513

RESUMO

Endothelial cells (ECs) migration is a crucial early step in vascular repair and tissue neovascularization. While extensive research has elucidated the biochemical drivers of endothelial motility, the impact of biophysical cues, including vessel geometry and topography, remains unclear. Herein, we present a novel approach to reconstruct 3D self-assembly blood vessels-on-a-chip that accurately replicates real vessel geometry and topography, surpassing conventional 2D flat tube formation models. This vessels-on-a-chip system enables real-time monitoring of vasculogenesis and ECs migration at high spatiotemporal resolution. Our findings reveal that ECs exhibit increased migration speed and directionality in response to narrower vessel geometries, transitioning from a rounded to a polarized morphology. These observations underscore the critical influence of vessel size in regulating ECs migration and morphology. Overall, our study highlights the importance of biophysical factors in shaping ECs behavior, emphasizing the need to consider such factors in future studies of endothelial function and vessel biology.

9.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891794

RESUMO

The chiral H8-BINOL derivatives R-1 and R-2 were efficiently synthesized via a Suzuki coupling reaction, and they can be used as novel dialdehyde fluorescent probes for the enantioselective recognition of R/S-2-amino-1-phenylethanol. In addition, R-1 is much more effective than R-2. Scanning electron microscope images and X-ray analyses show that R-1 can form supramolecular vesicles through the self-assembly effect of the π-π force and strong hydrogen bonding. As determined via analysis, the fluorescence of the probe was significantly enhanced by mixing a small amount of S-2-amino-1-phenylethanol into R-1, with a redshift of 38 nm, whereas no significant fluorescence response was observed in R-2-amino-1-phenylethanol. The enantioselective identification of S-2-amino-1-phenylethanol by the probe R-1 was further investigated through nuclear magnetic titration and fluorescence kinetic experiments and DFT calculations. The results showed that this mechanism was not only a simple reactive probe but also realized object recognition through an ICT mechanism. As the intramolecular hydrogen bond activated the carbonyl group on the probe R-1, the carbonyl carbon atom became positively charged. As a strong nucleophile, the amino group of S-2-amino-1-phenylethanol first transferred the amino electrons to a carbonyl carbocation, resulting in a significantly enhanced fluorescence of the probe R-1 and a 38 nm redshift. Similarly, S-2-amino-1-phenylethanol alone caused severe damage to the self-assembled vesicle structure of the probe molecule itself due to its spatial structure, which made R-1 highly enantioselective towards it.


Assuntos
Amino Álcoois , Ligação de Hidrogênio , Estereoisomerismo , Amino Álcoois/química , Corantes Fluorescentes/química , Cinética , Estrutura Molecular , Modelos Moleculares , Naftóis
10.
Adv Mater ; : e2406872, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865488

RESUMO

Self-assembled monolayers (SAMs) as the hole-selective contact have achieved remarkable success in iodine-based perovskite solar cells (PSCs), while their impact on bromine-based PSCs is limited due to the poor perovskite crystallization behavior and mismatched energy level alignment. Here, a highly efficient SAM of (2-(3,6-diiodo-9H-carbazol-9-yl)ethyl)phosphonic acid (I-2PACz) is employed to address these challenges in FAPbBr3-based PSCs. The incorporation of I atoms into I-2PACz not only releases tensile stress within FAPbBr3 perovskite, promoting oriented crystallization and minimizing defects through halogen-halogen bond, but also optimizes the energy levels alignment at hole-selective interface for enhanced hole extraction. Ultimately, a power conversion efficiency (PCE) of 11.14% is achieved, which stands among the highest reported value for FAPbBr3 PSCs. Furthermore, the semitransparent devices/modules exhibit impressive PCEs of 8.19% and 6.23% with average visible transmittance of 41.98% and 38.99%. Remarkably, after operating at maximum power point for 1000 h, the encapsulated device maintains 93% of its initial PCE. These results demonstrate an effective strategy for achieving high-performance bromine-based PSCs toward further applications.

11.
Front Microbiol ; 15: 1402963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903798

RESUMO

Based on the whole virus or spike protein of pigs, δ coronavirus (PDCoV) as an immunogen may have unrelated antigenic epitope interference. Therefore, it is essential for screening and identifying advantageous protective antigen epitopes. In addition, immunoinformatic tools are described as an important aid in determining protective antigenic epitopes. In this study, the primary, secondary, and tertiary structures of vaccines were measured using ExPASy, PSIPRED 4.0, and trRosetta servers. Meanwhile, the molecular docking analysis and vector of the candidate nanovaccine were constructed. The immune response of the candidate vaccine was simulated and predicted using the C-ImmSim server. This experiment screened B cell epitopes with strong immunogenicity and high conservation, CTL epitopes, and Th epitopes with IFN-γ and IL-4 positive spike proteins. Ferritin is used as a self-assembled nanoparticle element for designing candidate nanovaccine. After analysis, it has been found to be soluble, stable, non-allergenic, and has a high affinity for its target receptor, TLR-3. The preliminary simulation analysis results show that the candidate nanovaccine has the ability to induce a humoral and cellular immune response. Therefore, it may provide a new theoretical basis for research on coronavirus self-assembled nanovaccines. It may be an effective candidate vaccine for controlling and preventing PDCoV.

12.
Angew Chem Int Ed Engl ; : e202407278, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924343

RESUMO

The concept of pore space partition has emerged as an effective strategy for developing improved coordination-based supramolecular porous materials with exceptional performance. Herein, we report that a water-soluble self-assembled tetrahedral cage 1 with a partitioned cavity shown excellent performance as a multifunctional extractant. The results show that this unique partitioned cavity can efficiently separate halogenated adamantanes, adamantane isomers, and polycyclic aromatic hydrocarbons. Furthermore, the influence of cavity-partitioned cage 1 on the electrochemical properties of redox-active molecules and electrochemically driven reversible host-guest process has also been demonstrated. The findings offer valuable insights into the design and development of new type of materials with controlled phase separation and tailored electrochemical properties.

13.
Small ; : e2402857, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934535

RESUMO

2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.

14.
Adv Mater ; : e2405145, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877385

RESUMO

Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag+ activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field-driven threshold switching and a high energy efficiency. Additionally, Ag+ migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms.

15.
ACS Sens ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912608

RESUMO

Extracellular vesicles (EVs) are preeminent carriers of biomarkers and have become the subject of intense biomedical research for medical diagnostics using biosensors. To create effective EV-based immunoassays, it is imperative to develop surface chemistry approaches with optimal EV detection targeting transmembrane protein biomarkers that are not affected by cell-to-cell variability. Here, we developed a series of immunoassays for the detection of EVs derived from mouse monocyte cells using surface plasmon resonance (SPR) biosensors. We chemically immobilized antibodies onto mixed self-assembled monolayers of oligo ethylene glycol (OEG) alkanethiolates with carboxylic and hydroxylic terminal groups. The effects of antibody clonality (monoclonal vs polyclonal) and antibody surface coverage in targeting EVs via CD81 tetraspanins were investigated. We determined binding kinetic parameters, establishing trends from steric hindrance effects and epitope recognition properties of antibodies. Our results indicate that a 40% surface coverage of polyclonal antibodies covalently linked onto a mixed SAM with 10% of terminated -COOH groups yields a promising approach for EV detection with a linear range of 1.9 × 108-1.9 × 109 EVs/mL and a limit of detection of 5.9 × 106 EVs/mL. This optimal immunoassay exhibits a 1.92 nM equilibrium dissociation constant for bound EVs, suggesting a high binding affinity when CD81 is targeted. Our study provides important insights into surface chemistry development for EV detection targeted via transmembrane protein biomarkers using antibodies, which has promising applications for disease diagnostics.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38920133

RESUMO

The high performance of intermediate-to-low temperature solid oxide fuel cells (ILT-SOFCs) closely depends on the catalytic activity of the cathode material. However, most high-activity perovskite cathodes are rich in Sr and will arise from Sr segregation during the long-term working, resulting in the decay of activity and stability. Herein, by regulating the calcined way and temperature, a type of self-assembled nanocomposite perovskite cathode is developed, the stoichiometric SrCo0.7Fe0.2Sc0.1O3-δ (SCFSc) powder self-separates into a cubic phase (Pm3̅m, Sc-rich) and a tetragonal phase (P4/mmm, Sc-fewer). Meanwhile, a single cubic phase is prepared with the same formula via calcining the SCFSc pellet. It is found that the nanocomposite cathode shows better oxygen reduction reaction catalytic activity than single cubic SCFSc, caused by lower impedance of oxygen surface exchange and bulk diffusion. Particularly, the nanocomposite SCFSc cathode with the self-assembled heterointerfaces mitigates the Sr segregation and shows a peak power density of 1.17 W cm-2 at 700 °C and excellent stability for ∼101 h at 600 °C. This work provides a strategy for the development of nanocomposite cathodes to mitigate cation segregation and improve catalytic activity and stability.

17.
Nanomaterials (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38869607

RESUMO

Perfluorododecyl iodide (I-PFC12) is of interest for area-selective deposition (ASD) applications as it exhibits intriguing properties such as ultralow surface energy, the ability to modify silicon's band gap, low surface friction, and suitability for micro-contact patterning. Traditional photolithography is struggling to reach the required critical dimensions. This study investigates the potential of using I-PFC12 as a way to produce contrast between the growth area and non-growth areas of a surface subsequent to extreme ultraviolet (EUV) exposure. Once exposed to EUV, the I-PFC12 molecule should degrade with the help of the photocatalytic substrate, allowing for the subsequent selective deposition of the hard mask. The stability of a vapor-deposited I-PFC12 self-assembled monolayer (SAM) was examined when exposed to ambient light for extended periods of time by using X-ray photoelectron spectroscopy (XPS). Two substrates, SiO2 and TiO2, are investigated to ascertain the suitability of using TiO2 as a photocatalytic active substrate. Following one month of exposure to light, the atomic concentrations showed a more substantial fluorine loss of 10.2% on the TiO2 in comparison to a 6.2% loss on the SiO2 substrate. This more pronounced defluorination seen on the TiO2 is attributed to its photocatalytic nature. Interestingly, different routes to degradation were observed for each substrate. Reference samples preserved in dark conditions with no light exposure for up to three months show little degradation on the SiO2 substrate, while no change is observed on the TiO2 substrate. The results reveal that the I-PFC12 SAM is an ideal candidate for resistless EUV lithography.

18.
Acta Biomater ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838903

RESUMO

Limited success has been achieved in ferroptosis-induced cancer treatment due to the challenges related to low production of toxic reactive oxygen species (ROS) and inherent ROS resistance in cancer cells. To address this issue, a self-assembled nanodrug have been investigated that enhances ferroptosis therapy by increasing ROS production and reducing ROS inhibition. The nanodrug is constructed by allowing doxorubicin (DOX) to interact with Fe2+ through coordination interactions, forming a stable DOX-Fe2+ chelate, and this chelate further interacts with sorafenib (SRF), resulting in a stable and uniform nanoparticle. In tumor cells, overexpressed glutathione (GSH) triggers the disassembly of nanodrug, thereby activating the drug release. Interestingly, the released DOX not only activates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) to produce abundant H2O2 production for enhanced ROS production, but also acts as a chemotherapeutics agent, synergizing with ferroptosis. To enhance tumor selectivity and improve the blood clearance, the nanodrug is coated with a related cancer cell membrane, which enhances the selective inhibition of tumor growth and metastasis in a B16F10 mice model. Our findings provide valuable insights into the rational design of self-assembled nanodrug for enhanced ferroptosis therapy in cancer treatment. STATEMENT OF SIGNIFICANCE: Ferroptosis is a non-apoptotic form of cell death induced by the iron-regulated lipid peroxides (LPOs), offering a promising potential for effective and safe anti-cancer treatment. However, two significant challenges hinder its clinical application: 1) The easily oxidized nature of Fe2+ and the low concentration of H2O2 leads to a low efficiency of intracellular Fenton reaction, resulting in poor therapeutic efficacy; 2) The instinctive ROS resistance of cancer cells induce drug resistance. Therefore, we developed a simple and high-efficiency nanodrug composed of self-assembling by Fe2+ sources, H2O2 inducer and ROS resistance inhibitors. This nanodrug can effectively deliver the Fe2+ sources into tumor tissue, enhance intracellular concentration of H2O2, and reduce ROS resistance, achieving a high-efficiency, precise and safe ferroptosis therapy.

19.
Vaccine ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824085

RESUMO

The conventional inactivated tetanus toxin plays an instrumental role in preventing tetanus. Nevertheless, the challenges associated with its production process, the potential for adverse reactions, and reduced effectiveness in vulnerable populations such as neonates and the elderly rise the need for a novel tetanus toxin vaccine. Recombinant subunit vaccine offer a viable solution, and the tetanus toxin fragment C (TTFC) is emerging as a promising candidate. In this study, through spontaneous isopeptide bond formation we conjugated the recombinant TTFC to self-assembled mi3 nanoparticle, which derived from an optimized KDPG aldolase, and generated the TTFC-mi3 protein nanoparticle vaccine. We found that TTFC-mi3 is stable, uniform spherical nanoparticles. Comparing with the free TTFC alone, TTFC-mi3 enhances the uptake and subsequent activation of dendric cells (DCs). In addition, a single dose of adjuvant-free TTFC-mi3 elicited a more rapid and potent protective immunity in mice. Moreover, TTFC-mi3 is of favorable safety in vitro and in vivo. Our findings indicate that TTFC-mi3 is a rapid-response, non-aluminum-adjuvanted vaccine against tetanus.

20.
ACS Appl Mater Interfaces ; 16(26): 34349-34357, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912925

RESUMO

Two-dimensional materials hold great potentials for beyond-CMOS (complementary metal-oxide-semiconductor) electronical and optoelectrical applications, and the development of field effect transistors (FET) with excellent performance using such materials is of particular interest. How to improve the performance of devices thus becomes an urgent issue. The performance of FETs depends greatly on the intrinsic electrical properties of the channel materials, meanwhile the device interface quality, such as extrinsic scattering of charged impurities, charge traps, and substrate surface roughness have a great influence on the performance. In this paper, the impact of the interface quality on the carrier diffusion behaviors of monolayer (ML) MoSe2 has been investigated by using an in situ ultrafast laser technique to avoid the surface contamination during device fabrication process. Two types of self-assembled monolayers (SAMs) are introduced to modify the gate dielectric surface through an interface engineering approach to obtain chemical-stable interfaces. The results showed that the transport properties of ML MoSe2 were enhanced after interface engineering, for example, the carrier mobility of ML MoSe2 was improved from ∼59.4 to ∼166.5 cm2 V-1 s-1 after the SAM modification. Meanwhile, the photocarrier dynamics of ML MoSe2 before and after interfacial engineering were also carefully studied. Our studies provide a feasible method for improving the carrier diffusion behaviors of such materials, and making them suited for application in future integrated circuit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...