Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.347
Filtrar
1.
Br Poult Sci ; 65(4): 465-477, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994755

RESUMO

1. A stimbiotic (STB) is any feed additive that stimulates caeca fibre fermentation, although the additive itself contributes little to the caeca short-chain fatty acid (SCFA) production. A 42 d experiment investigated the interactive effects of STB and wheat bran (WB) in broiler chickens receiving maize or wheat-based diets.2. The treatments were arranged in a 2 × 2 × 2 factorial (eight replicates each), the dietary factors being diet (maize-SBM or wheat-SBM), STB (with or without) and WB (0 or 50 g/kg). Jejunal tissue, gizzard, jejunal and ileal digesta and caecal contents were collected on d 18 and 42.3. Gizzard pH tended to decrease with STB (p = 0.06) supplementation and was lower in birds fed wheat- compared to maize-based diets on d 18 (p < 0.05). Birds receiving diets with WB had higher jejunum pH on d 18 (p < 0.05).4. Total short-chain fatty acids (SCFA) in the caeca on d 18 and isobutyrate on d 42 were higher (p < 0.05) for maize compared with wheat-based diets. However, on d 42, acetate, butyrate and total SCFA were higher (p < 0.05) for wheat-based compared with maize-based diets.5. On d 18, STB and WB inclusion increased villi height (VH; p < 0.05) and VH to crypt depth ratio (VH/CD), respectively (p < 0.05). On d 42, VH (p < 0.05) and VH/CD were higher in wheat-based diets (p < 0.05). The VH/CD ratio was lower with STB supplementation (p < 0.05). Marker-corrected pentose oligosaccharides (Pent)4 and (Pent)5 concentrations in the ileal digesta were reduced (p < 0.05) with STB supplementation. In addition, STB decreased (Pent)3 concentration in maize-, but not wheat-based diets (p < 0.05).6. In conclusion, both WB and STB influenced gastrointestinal pH and jejunum histomorphology of broilers without increasing oligosaccharide concentration in the ileum and SCFA in the caeca.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Ceco , Galinhas , Dieta , Fibras na Dieta , Ácidos Graxos Voláteis , Jejuno , Oligossacarídeos , Triticum , Zea mays , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Ácidos Graxos Voláteis/metabolismo , Zea mays/química , Triticum/química , Dieta/veterinária , Jejuno/anatomia & histologia , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Fibras na Dieta/administração & dosagem , Oligossacarídeos/administração & dosagem , Suplementos Nutricionais/análise , Masculino , Distribuição Aleatória
2.
Cell Rep Med ; 5(7): 101646, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019013

RESUMO

Bowel movement frequency (BMF) directly impacts the gut microbiota and is linked to diseases like chronic kidney disease or dementia. In particular, prior work has shown that constipation is associated with an ecosystem-wide switch from fiber fermentation and short-chain fatty acid production to more detrimental protein fermentation and toxin production. Here, we analyze multi-omic data from generally healthy adults to see how BMF affects their molecular phenotypes, in a pre-disease context. Results show differential abundances of gut microbial genera, blood metabolites, and variation in lifestyle factors across BMF categories. These differences relate to inflammation, heart health, liver function, and kidney function. Causal mediation analysis indicates that the association between lower BMF and reduced kidney function is partially mediated by the microbially derived toxin 3-indoxyl sulfate (3-IS). This result, in a generally healthy context, suggests that the accumulation of microbiota-derived toxins associated with abnormal BMF precede organ damage and may be drivers of chronic, aging-related diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Indicã/sangue , Motilidade Gastrointestinal/fisiologia , Constipação Intestinal/sangue , Constipação Intestinal/microbiologia , Idoso
3.
Artigo em Inglês | MEDLINE | ID: mdl-39046027

RESUMO

BACKGROUND: Infants with small bowel stomas (SBstoma) frequently struggle with absorption and rely on parenteral nutrition (PN). Intestinal absorption is difficult to predict based solely on intestinal anatomy. The purpose of this study was to characterize the microbiota and metabolic by-products within stoma effluent and correlate with clinical features and intestinal absorption. METHODS: Prospective cohort study collecting stoma samples from neonates with SBstoma (N = 23) or colostomy control (N = 6) at initial enteral feed (first sample) and before stoma closure (last sample). Gut bacteriome (16S rRNA sequencing), short-chain fatty acids (SCFAs) and bile acids (BAs) were characterized along with volume and energy content of a 48 h collection via bomb calorimetry (last sample). Hierarchical clustering and linear regression were used to compare the bacteriome and BAs/SCFAs, to bowel length, PN, and growth. RESULTS: Infants with ≤50% small bowel lost more fluid on average than those with >50% and controls (22, 18, 16 mL/kg/d, p = 0.013), but had similar energy losses (7, 10, 9 kcal/kg/d, p = 0.147). Infants growing poorly had enrichment of Proteobacteria compared to infants growing well (90% vs. 15%, p = 0.004). An increase in the ratio of secondary BAs within the small bowel over time, correlated with poor prognostic factors (≤50% small bowel, >50% of calories from PN, and poor growth). CONCLUSION: Infants with SBstoma and poor growth have a unique bacteriome community and those with poor enteral tolerance have metabolic differences compared to infants with improved absorption.

4.
Mol Neurobiol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052184

RESUMO

Observational studies have shown gut microbiota changes in sporadic Creutzfeldt-Jakob disease patients, but the causal relationship remains unknown. We aimed to determine any causal links between gut microbiota and this prion disease. Using Mendelian randomization analysis, we examined the causal relationship between gut microbiota composition and sporadic Creutzfeldt-Jakob disease. Data on gut microbiota (N = 18,340) and disease cases (5208) were obtained. Various analysis methods were used, including inverse variance weighted, Mendelian randomization-Egger, weighted median, simple mode, and weighted mode. In addition, MR-PRESSO was used to evaluate horizontal pleiotropy and detect outliers. Pleiotropy and heterogeneity were assessed, and reverse analysis was conducted. Negative associations were found between sporadic Creutzfeldt-Jakob disease and family Defluviitaleaceae, family Ruminococcaceae, genus Butyricicoccus, genus Desulfovibrio, and genus Eubacterium nodatum. Genus Lachnospiraceae UCG010 showed a positive correlation. Reverse analysis indicated genetic associations between the disease and decreased levels of family Peptococcaceae, genus Faecalibacterium, and genus Phascolarctobacterium, as well as increased levels of genus Butyrivibrio. No pleiotropy, heterogeneity, outliers, or weak instrument bias were observed. This study revealed bidirectional causal effects between specific gut microbiota components and sporadic Creutzfeldt-Jakob disease. Certain components demonstrated inhibitory effects on disease pathogenesis, while others were positively associated with the disease. Modulating gut microbiota may provide new insights into prion disease therapies. Further research is needed to clarify mechanisms and explore treatments for sporadic Creutzfeldt-Jakob disease.

5.
Metabolites ; 14(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057682

RESUMO

Wheat bran (WB) is a low-value by-product of the wheat milling industry. Solid-state fermentation with Rhizopus oligosporus is performed to improve WB's nutritional quality (RH). Twenty-five mice (11-week-old C57BL/6N male mice) were divided into three groups. The first group was fed a control diet (n = 8), the second group a 10% WB-supplemented diet (n = 8), and the last group had a 10% RH-supplemented diet (n = 9). The diet treatment was administered for 4 days before dextran sodium sulfate (DSS, 3% in drinking water) was administered for 9 days. RH supplementation prevented bodyweight loss and reduced the disease activity index in mice. An increase in the level of SCFAs in mouse intestines was detected post-RH supplementation, suggesting that SCFAs might have contributed to its anti-colitis effect. Metabolome analysis was conducted to explore other bioactive compounds in RH. R. oligosporus fermentation significantly increased the amounts of ergothioneine, arginine, branched-chain amino acids, and adenosine in wheat bran. All of these compounds are known to have antioxidant and anti-inflammatory capacities. These bioactive compounds might also have contributed to the RH's ability to ameliorate DSS-induced colitis.

6.
Gut Microbes ; 16(1): 2377570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034613

RESUMO

Recent evidence indicates that repeated antibiotic usage lowers microbial diversity and ultimately changes the gut microbiota community. However, the physiological effects of repeated - but not recent - antibiotic usage on microbiota-mediated mucosal barrier function are largely unknown. By selecting human individuals from the deeply phenotyped Estonian Microbiome Cohort (EstMB), we here utilized human-to-mouse fecal microbiota transplantation to explore long-term impacts of repeated antibiotic use on intestinal mucus function. While a healthy mucus layer protects the intestinal epithelium against infection and inflammation, using ex vivo mucus function analyses of viable colonic tissue explants, we show that microbiota from humans with a history of repeated antibiotic use causes reduced mucus growth rate and increased mucus penetrability compared to healthy controls in the transplanted mice. Moreover, shotgun metagenomic sequencing identified a significantly altered microbiota composition in the antibiotic-shaped microbial community, with known mucus-utilizing bacteria, including Akkermansia muciniphila and Bacteroides fragilis, dominating in the gut. The altered microbiota composition was further characterized by a distinct metabolite profile, which may be caused by differential mucus degradation capacity. Consequently, our proof-of-concept study suggests that long-term antibiotic use in humans can result in an altered microbial community that has reduced capacity to maintain proper mucus function in the gut.


Assuntos
Antibacterianos , Bactérias , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Muco , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Camundongos , Muco/metabolismo , Muco/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Feminino , Fezes/microbiologia , Adulto , Pessoa de Meia-Idade , Akkermansia , Camundongos Endogâmicos C57BL , Colo/microbiologia , Bacteroides fragilis/efeitos dos fármacos
7.
J Periodontol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031651

RESUMO

BACKGROUND: To explore the correlation between short-chain fatty acids (SCFAs) in the peri-implant sulcular fluid (PISF) and peri-implant diseases. METHODS: PISF samples were obtained from implants that have been placed for at least 5 years, and peri-implant clinical parameters were examined. Gas chromatography-mass spectrometry and high-performance liquid chromatography were used to detect SCFAs in PISF. The correlation between SCFAs and clinical parameters was analyzed by Spearman's correlation. SCFAs related to peri-implant disease were identified by logistic regression and ranked by random forest analysis. RESULTS: Eighty-six implants were divided into a peri-implant health group (PIH-group, 35 implants), peri-implant mucositis group (PIM-group, 25 implants), and peri-implantitis group (PI-group, 26 implants) according to clinical and radiographic examination results. The PIM-group had significantly lower formic acid detection rate than the other two groups (p < 0.001). The PIM-group had significantly higher levels of acetic, propionic, and isovaleric acids than the PIH-group (p < 0.05). The PI-group had significantly higher levels of propionic, butyric, isobutyric, valeric, and isovaleric acids than the PIH-group (p < 0.05). The PI-group had significantly higher levels of butyric, isobutyric, and isovaleric acids than the PIM-group (p < 0.05). SCFAs (apart from hexanoic and succinic acids) were significantly and positively correlated with clinical parameters (p < 0.05). SCFAs related to peri-implant disease were ranked as follows: butyric, isovaleric, isobutyric, propionic, acetic, formic, and lactic acids. CONCLUSIONS: Elevated specific SCFAs are correlated with peri-implant disease. Recognition of this correlation may help in early identification of peri-implant disease and guide further clinical interventions.

8.
Water Res ; 261: 122048, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981353

RESUMO

This study explored the potential application of plasma coupling ionic liquid on disintegration of waste activated sludge and enhanced production of short-chain fatty acids (SCFAs) in anaerobic fermentation. Under optimal conditions (dosage of ionic liquid [Emim]OTf = 0.1 g/g VSS (volatile suspended solids) and discharge power of dielectric barrier discharge plasma (DBD) = 75.2 W), the [Emim]OTf/DBD pretreatment increased SCFA production by 302 % and acetic acid ratio by 53 % compared to the control. Mechanistic investigations revealed that the [Emim]OTf/DBD combination motivated the generation of various reactive species (such as H2O2, O3, •OH, 1O2, ONOO-, and •O2-) and enhanced the utilization of physical energies (such as heat). The coupling effects of [Emim]OTf/DBD synergistically improved the disintegration of sludge and biodegradability of dissolved organic matter, promoting the sludge anaerobic fermentation process. Moreover, the [Emim]OTf/DBD pretreatment enriched hydrolysis and SCFAs-forming bacteria while inhibiting SCFAs-consuming bacteria. The net effect was pronounced expression of genes encoding key enzymes (such as alpha-glucosidase, endoglucanase, beta-glucosidase, l-lactate/D-lactate dehydrogenase, and butyrate kinase) involved in the SCFA-producing pathway, enhancing the production of SCFAs from sludge anaerobic fermentation. In addition, [Emim]OTf/DBD pretreatment facilitated sludge dewatering and heavy metal removal. Therefore, [Emim]OTf/DBD pretreatment is a promising approach to advancing sludge reduction, recyclability, and valuable resource recovery.

9.
Mini Rev Med Chem ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38982701

RESUMO

Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.

10.
Food Chem ; 458: 140180, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38964111

RESUMO

Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38965168

RESUMO

Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, modulate immune cell functions, particularly macrophages. This review explores the potential therapeutic applications of SCFAs in pulmonary fungal infections, a critical concern due to their high mortality rates and antifungal resistance. SCFAs enhance macrophage functions by promoting phagosome-lysosome fusion, increasing reactive oxygen species production, and balancing cytokine responses. Pulmonary fungal infections, caused by pathogens like Aspergillus fumigatus, are prevalent in immunocompromised patients, including those with diabetes, chronic obstructive pulmonary disease, and those on high-dose corticosteroids. SCFAs have shown promise in improving macrophage function in these contexts. However, the application of SCFAs must be balanced against potential side effects, including gut microbiota disruption and metabolic disorders. Further research is needed to optimize SCFA therapy for managing pulmonary fungal infections.

12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 385-391, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970512

RESUMO

Acute kidney injury (AKI) remains a global public health problem with high incidence, high mortality rates, expensive medical costs, and limited treatment options. AKI can further progress to chronic kidney disease (CKD) and eventually end-stage renal disease (ESRD). Previous studies have shown that trauma, adverse drug reactions, surgery, and other factors are closely associated with AKI. With further in-depth exploration, the role of gut microbiota in AKI is gradually revealed. After AKI occurs, there are changes in the composition of gut microbiota, leading to disruption of the intestinal barrier, intestinal immune response, and bacterial translocation. Meanwhile, metabolites of gut microbiota can exacerbate the progression of AKI. Therefore, elucidating the specific mechanisms by which gut microbiota is involved in the occurrence and development of AKI can provide new insights from the perspective of intestinal microbiota for the prevention and treatment of AKI.


Assuntos
Injúria Renal Aguda , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Injúria Renal Aguda/microbiologia , Injúria Renal Aguda/etiologia , Animais , Translocação Bacteriana , Insuficiência Renal Crônica/microbiologia , Progressão da Doença
13.
Adv Sci (Weinh) ; : e2403991, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973355

RESUMO

Though sterile diet, post-transplantation surgery is a clinical strategy for patient care to prevent the infiltration of gut pathogens, less is known about its effects on the gut microbiome. Here, the gut microbiome dynamics of leukemia patients following a 120-day "sterile-normal" diet strategy posthematopoietic cell transplantation are examined. In contrast to the traditional idea, a sterile diet leads to the lowest gut microbiota diversity (p < 0.05) and short-chain fatty acids, promoted the proliferation of potential pathogens such as Streptococcus (up by 16.93%) and Lactobacillus (up by 40.30%), and 43.32% reduction in nodes and an 85.33% reduction in edges within the microbial interaction's network. Interestingly, a normal diet allows the gut microbiome recovery and significantly promotes the abundance of beneficial bacteria. These results indicate that a sterile diet leads to a collapse of the patient's gut microbiome and promoted the proliferation of potential pathogens. This assay is a starting point for a more sophisticated assessment of the effects of a sterile diet. The work also suggests a basic principle for the re-establishment of microbial equilibrium that supplementation of microbial taxa may be the key to the restoration of the degraded ecosystem.

14.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976012

RESUMO

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Assuntos
Aquaporina 4 , Astrócitos , Encefalomielite Autoimune Experimental , Ácidos Graxos Voláteis , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos , Triptofano/metabolismo , Triptofano/farmacologia , Feminino , Transdução de Sinais/efeitos dos fármacos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
15.
Front Nutr ; 11: 1403497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966420

RESUMO

Introduction: Resistant starch (RS) has garnered attention for its health benefits, including modulating the gut microbiota and promoting the production of short-chain fatty acids (SCFAs). Methods: This study investigates structural changes of type 3 resistant starch from Canna edulis (CE) during in vitro simulated digestion and explores its health-relevant properties using healthy individuals' fecal microbiota. Results: CE, prepared with a RS content of 59.38%, underwent a comprehensive analysis employing X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). During simulated digestion, XRD analysis demonstrated a significant rise in CE's relative crystallinity from 38.92 to 49.34%. SEM illustrated the transition of CE from a smooth to a rough surface, a notable morphological shift. Post-digestion, CE was introduced into microbial fermentation. Notably, propionic acid and valeric acid levels significantly increased compared to the control group. Furthere more, beneficial Bifidobacterium proliferated while pathogenic Escherichia-Shigella was suppressed. When comparing CE to the well-known functional food fructo-oligosaccharide (FOS), CE showed a specific ability to support the growth of Bifidobacterium and stimulate the production of short-chain fatty acids (SCFAs) without causing lactic acid accumulation. Discussion: CE demonstrates potential as a functional health food, with implications for gut health enhancement and SCFAs production.

16.
Food Chem ; 458: 140293, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38970959

RESUMO

The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.

17.
Front Nutr ; 11: 1392666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978699

RESUMO

The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.

18.
Front Nutr ; 11: 1346923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978703

RESUMO

Recent experimental and epidemiological studies underscore the vital interaction between the intestinal microbiota and the lungs, an interplay known as the "gut-lung axis". The significance of this axis has been further illuminated following the identification of intestinal microbial metabolites, such as short-chain fatty acids (SCFA), as key mediators in setting the tone of the immune system. Through the gut-lung axis, the gut microbiota and its metabolites, or allergens, are directly or indirectly involved in the immunomodulation of pulmonary diseases, thereby increasing susceptibility to allergic airway diseases such as asthma. Asthma is a complex outcome of the interplay between environmental factors and genetic predispositions. The concept of the gut-lung axis may offer new targets for the prevention and treatment of asthma. This review outlines the relationships between asthma and the respiratory microbiome, gut microbiome, and environmental microbiome. It also discusses the current advancements and applications of microbiomics, offering novel perspectives and strategies for the clinical management of chronic respiratory diseases like asthma.

19.
Nutr Metab (Lond) ; 21(1): 49, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026248

RESUMO

BACKGROUND: Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS: This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS: Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS: SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.

20.
J Sci Food Agric ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007163

RESUMO

Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...