Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Ecol Evol ; 14(7): e11680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957694

RESUMO

An excavation of an Early Iron Age village near Aalborg in Denmark uncovered the jaws and skull fragments from a small mammal that were morphologically identified to the genus Crocidura (white-toothed shrews). Three Crocidura species are known from prehistoric continental Europe but none of them are distributed in Scandinavia, which is why this surprising finding warranted further analyses. The bone was radiocarbon-dated to 2840-2750 calibrated years before present (cal. BP), corresponding to the Late Bronze Age and hence earlier than the Iron Age archeological context in which it was found. Using highly optimized ancient DNA protocols, we extracted DNA from one tooth and shotgun-sequenced the sample to reconstruct a near-complete mitochondrial reference genome (17,317 bp, 32.6× coverage). Phylogenetic analyses determined this specimen as a bicolored shrew (Crocidura leucodon) but with a phylogenetic position basal to the clade of known sequences from this species. The confirmation of Crocidura presence in Denmark by the Late Bronze Age sheds new light on the prehistoric natural history of Scandinavia. We discuss the implications of this finding from both zoo-archeological and ecological perspectives. Furthermore, the mitochondrial genome reconstructed in this study offers a valuable resource for future research exploring the genetic makeup and evolutionary history of Eurasian shrew populations.

2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895372

RESUMO

The tree shrew (Tupaia belangeri) is a promising emerging model organism in biomedical studies, notably due to their evolutionary proximity to primates. To enhance our understanding of how DNA methylation is implicated in regulation of gene expression and the X chromosome inactivation (XCI) in tree shrew brains, here we present their first genome-wide, single-base-resolution methylomes integrated with transcriptomes from prefrontal cortices. We discovered both divergent and conserved features of tree shrew DNA methylation compared to that of other mammals. DNA methylation levels of promoter and gene body regions are negatively correlated with gene expression, consistent with patterns in other mammalian brains studied. Comparing DNA methylation patterns of the female and male X chromosomes, we observed a clear and significant global reduction (hypomethylation) of DNA methylation across the entire X chromosome in females. Our data suggests that the female X hypomethylation does not directly contribute to the gene silencing of the inactivated X chromosome nor does it significantly drive sex-specific gene expression of tree shrews. However, we identified a putative regulatory region in the 5' end of the X inactive specific transcript (Xist) gene, a key gene for XCI, whose pattern of differential DNA methylation strongly relate to its differential expression between male and female tree shrews. We show that differential methylation of this region is conserved across different species. Moreover, we provide evidence suggesting that the observed difference between human and tree shrew X-linked promoter methylation is associated with the difference in genomic CpG contents. Our study offers novel information on genomic DNA methylation of tree shrews, as well as insights into the evolution of X chromosome regulation in mammals.

3.
Sci Rep ; 14(1): 14734, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926520

RESUMO

Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL). There, we identified the position of the major nuclei, their input pattern, transmitter content, expression of calcium binding proteins (CaBPs) and two voltage-gated ion channels. The most prominent SOC structures were the medial nucleus of the trapezoid body (MNTB), the lateral nucleus of the trapezoid body (LNTB), the lateral superior olive (LSO) and the superior paraolivary nucleus (SPN). In the NLL, the ventral (VNLL), a specific ventrolateral VNLL (VNLLvl) cell population, the intermediate (INLL) and dorsal (DNLL) nucleus, as well as the inferior colliculus's central aspect were discerned. INLL and VNLL were clearly separated by the differential distribution of various marker proteins. Most labelled proteins showed expression patterns comparable to rodents. However, SPN neurons were glycinergic and not GABAergic and the overall CaBPs expression was low. Next to the characterisation of the Etruscan shrew's auditory brainstem, our work identifies conserved nuclei and indicates variable structures in a species that approximates ancestral conditions.


Assuntos
Musaranhos , Complexo Olivar Superior , Animais , Musaranhos/anatomia & histologia , Complexo Olivar Superior/anatomia & histologia , Complexo Olivar Superior/metabolismo , Vias Auditivas/anatomia & histologia , Neurônios/metabolismo , Colículos Inferiores/anatomia & histologia , Colículos Inferiores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/metabolismo , Masculino , Núcleo Olivar/anatomia & histologia , Núcleo Olivar/metabolismo
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853555

RESUMO

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Giro do Cíngulo , Potenciação de Longa Duração , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Tupaiidae , Animais , Potenciação de Longa Duração/fisiologia , Giro do Cíngulo/fisiologia , Tupaiidae/fisiologia , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/metabolismo , Adenilil Ciclases/metabolismo , Ácido Glutâmico/metabolismo , Masculino
5.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932262

RESUMO

Hepatitis A virus (HAV), a member of the genus Hepatovirus (Picornaviridae HepV), remains a significant viral pathogen, frequently causing enterically transmitted hepatitis worldwide. In this study, we conducted an epidemiological survey of HepVs carried by small terrestrial mammals in the wild in Yunnan Province, China. Utilizing HepV-specific broad-spectrum RT-PCR, next-generation sequencing (NGS), and QNome nanopore sequencing (QNS) techniques, we identified and characterized two novel HepVs provisionally named EpMa-HAV and EpLe-HAV, discovered in the long-tailed mountain shrew (Episoriculus macrurus) and long-tailed brown-toothed shrew (Episoriculus leucops), respectively. Our sequence and phylogenetic analyses of EpMa-HAV and EpLe-HAV indicated that they belong to the species Hepatovirus I (HepV-I) clade II, also known as the Chinese shrew HepV clade. Notably, the codon usage bias pattern of novel shrew HepVs is consistent with that of previously identified Chinese shrew HepV. Furthermore, our structural analysis demonstrated that shrew HepVs differ from other mammalian HepVs in RNA secondary structure and exhibit variances in key protein sites. Overall, the discovery of two novel HepVs in shrews expands the host range of HepV and underscores the existence of genetically diverse animal homologs of human HAV within the genus HepV.


Assuntos
Genoma Viral , Filogenia , Musaranhos , Animais , Musaranhos/virologia , China/epidemiologia , RNA Viral/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/epidemiologia
6.
Zool Res ; 45(3): 617-632, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766745

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.


Assuntos
Glândulas Suprarrenais , Esteroides , Animais , Glândulas Suprarrenais/metabolismo , Humanos , Esteroides/biossíntese , Esteroides/metabolismo , Transcriptoma , Camundongos , Tupaiidae , Feminino , Multiômica
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731821

RESUMO

In contrast to cats and dogs, here we report that the α2-adrenergic receptor antagonist yohimbine is emetic and corresponding agonists clonidine and dexmedetomidine behave as antiemetics in the least shrew model of vomiting. Yohimbine (0, 0.5, 0.75, 1, 1.5, 2, and 3 mg/kg, i.p.) caused vomiting in shrews in a bell-shaped and dose-dependent manner, with a maximum frequency (0.85 ± 0.22) at 1 mg/kg, which was accompanied by a key central contribution as indicated by increased expression of c-fos, serotonin and substance P release in the shrew brainstem emetic nuclei. Our comparative study in shrews demonstrates that clonidine (0, 0.1, 1, 5, and 10 mg/kg, i.p.) and dexmedetomidine (0, 0.01, 0.05, and 0.1 mg/kg, i.p.) not only suppress yohimbine (1 mg/kg, i.p.)-evoked vomiting in a dose-dependent manner, but also display broad-spectrum antiemetic effects against diverse well-known emetogens, including 2-Methyl-5-HT, GR73632, McN-A-343, quinpirole, FPL64176, SR141716A, thapsigargin, rolipram, and ZD7288. The antiemetic inhibitory ID50 values of dexmedetomidine against the evoked emetogens are much lower than those of clonidine. At its antiemetic doses, clonidine decreased shrews' locomotor activity parameters (distance moved and rearing), whereas dexmedetomidine did not do so. The results suggest that dexmedetomidine represents a better candidate for antiemetic potential with advantages over clonidine.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Antieméticos , Clonidina , Dexmedetomidina , Vômito , Ioimbina , Animais , Masculino , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Clonidina/farmacologia , Clonidina/análogos & derivados , Clonidina/uso terapêutico , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Modelos Animais de Doenças , Eméticos/farmacologia , Musaranhos , Vômito/tratamento farmacológico , Vômito/induzido quimicamente , Ioimbina/farmacologia
8.
One Health ; 18: 100723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623498

RESUMO

Blastocystis is a parasitic protist that can infect humans and various domestic and wild animals. However, there is limited research on the prevalence of this parasite among rodents, particularly those living in pig farm settings. Therefore, to investigate the occurrence, molecular characterization, and zoonotic potential of Blastocystis among rodents within pig farm environments, we conducted an investigation of 227 rodents and shrews from 34 pig farms located in Henan, Shaanxi, and Shanxi provinces of China using nested PCR of the SSU rRNA gene of Blastocystis. The potential transmission and public health implications were also assessed from a One Health perspective. Blastocystis was detected in 86 (37.9%) fecal samples. The highest infection rate was observed among Ruttus norvegicus (73.7%, 42/58), followed by Ruttus tanezumi (30.1%, 41/136), and Mus musculus (12.0%, 3/25). However, it was not detected among individuals with Apodemus agrarius (n = 1) and Crocidura shantungensis (n = 7). Five known zoonotic Blastocystis subtypes (ST1-ST5) were identified, with ST4 (51.2%, 44/86) and ST5 (40.7%, 35/86) being the predominant ones, followed by ST1 (3.5%, 3/86), ST3 (3.5%, 3/86), and ST2 (1.2%, 1/86). ST4 was prevalent among R. norvegicus (83.3%, 35/42), while ST5 dominated R. tanezumi (70.7%, 29/41). Furthermore, ST5 exhibited the widest distribution at pig farm level, accounting for 65.0% (13/20) of Blastocystis-positive pig farms. This investigation presents the first documented Blastocystis infection in R. tanezumi and M. musculus, highlighting the predominant presence of the zoonotic ST5 subtype in rodents for the first time. The results demonstrate that sympatric rodents can serve as natural reservoirs for Blastocystis and play a role in its transmission. These findings provide information on the dynamics of rodent transmission and emphasize the potential public health threat posed by zoonotic Blastocystis subtypes spillover from pig farms.

9.
Zool Res ; 45(2): 429-438, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485510

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.


Assuntos
Tupaia , Vírus , Animais , Filogenia , Primatas , Musaranhos , Tupaia/fisiologia , Tupaiidae
10.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538082

RESUMO

Rodent models, such as mice and rats, are commonly used to examine retinal ganglion cell damage in eye diseases. However, as nocturnal animals, rodent retinal structures differ from primates, imposing significant limitations in studying retinal pathology. Tree shrews (Tupaia belangeri) are small, diurnal paraprimates that exhibit superior visual acuity and color vision compared with mice. Like humans, tree shrews have a dense retinal nerve fiber layer (RNFL) and a thick ganglion cell layer (GCL), making them a valuable model for investigating optic neuropathies. In this study, we applied high-resolution visible-light optical coherence tomography to characterize the tree shrew retinal structure in vivo and compare it with that of humans and mice. We quantitatively characterize the tree shrew's retinal layer structure in vivo, specifically examining the sublayer structures within the inner plexiform layer (IPL) for the first time. Next, we conducted a comparative analysis of retinal layer structures among tree shrews, mice, and humans. We then validated our in vivo findings in the tree shrew inner retina using ex vivo confocal microscopy. The in vivo and ex vivo analyses of the shrew retina build the foundation for future work to accurately track and quantify the retinal structural changes in the IPL, GCL, and RNFL during the development and progression of human optic diseases.


Assuntos
Tupaia , Tupaiidae , Humanos , Camundongos , Animais , Ratos , Musaranhos , Retina/diagnóstico por imagem , Células Ganglionares da Retina/patologia
11.
Mol Immunol ; 167: 34-42, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340674

RESUMO

Myopia is widely recognized as an epidemic. Studies have found a link between Transforming Growth Factor-beta (TGF-ß) and myopia, but the specific molecular mechanisms are not fully understood. In this study, a monocular model in tree shrews (Tupaia belangeri) was established to verify the molecular mechanism of TGF-ß in myopia. The results indicated that there were significant changes in TGF-ßs during the treatment of myopia, which could enhance the refractive ability and axial length of the eye. Immunohistochemical staining, real-time fluorescent quantitative PCR, and immunoblotting results showed a significant upregulation of MMP2 and NF-κB levels, and a significant downregulation of COL-I expression in the TGF-ß treated eyes, suggesting that NF-κB and MMP2 are involved in the signaling pathways of TGF-ßs induced myopia and axial elongation. Moreover, the expression levels of IL-6, IL-8, MCP-1, IL-1ß, TNF-α, TAK1, and NF-κB in the retina were all significantly elevated. This indicates that TGF-ß stimulates the inflammatory response of retinal pigment epithelial cells through the TAK1-NF-κB signaling pathway. In conclusion, this study suggests that TGF-ß promotes the progression of myopia by enhancing intraocular inflammation.


Assuntos
Miopia , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , NF-kappa B/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Retina , Miopia/genética , Miopia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Front Immunol ; 15: 1315198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343538

RESUMO

Objective: Systemic sclerosis (SSc) is a chronic systemic disease characterized by immune dysregulation and fibrosis for which there is no effective treatment. Animal models are crucial for advancing SSc research. Tree shrews are genetically, anatomically, and immunologically closer to humans than rodents. Thus, the tree shrew model provides a unique opportunity for translational research in SSc. Methods: In this study, a SSc tree shrew model was constructed by subcutaneous injection of different doses of bleomycin (BLM) for 21 days. We assessed the degree of inflammation and fibrosis in the skin and internal organs, and antibodies in serum. Furthermore, RNA sequencing and a series of bioinformatics analyses were performed to analyze the transcriptome changes, hub genes and immune infiltration in the skin tissues of BLM induced SSc tree shrew models. Multiple sequence alignment was utilized to analyze the conservation of selected target genes across multiple species. Results: Subcutaneous injection of BLM successfully induced a SSc model in tree shrew. This model exhibited inflammation and fibrosis in skin and lung, and some developed esophageal fibrosis and secrum autoantibodies including antinuclear antibodies and anti-scleroderma-70 antibody. Using RNA sequencing, we compiled skin transcriptome profiles in SSc tree shrew models. 90 differentially expressed genes (DEGs) were identified, which were mainly enriched in the PPAR signaling pathway, tyrosine metabolic pathway, p53 signaling pathway, ECM receptor interaction and glutathione metabolism, all of which are closely associated with SSc. Immune infiltration analysis identified 20 different types of immune cells infiltrating the skin of the BLM-induced SSc tree shrew models and correlations between those immune cells. By constructing a protein-protein interaction (PPI) network, we identified 10 hub genes that were significantly highly expressed in the skin of the SSc models compared to controls. Furthermore, these genes were confirmed to be highly conserved in tree shrews, humans and mice. Conclusion: This study for the first time comfirmed that tree shrew model of SSc can be used as a novel and promising experimental animal model to study the pathogenesis and translational research in SSc.


Assuntos
Escleroderma Sistêmico , Tupaia , Humanos , Animais , Camundongos , Tupaiidae , Musaranhos , Modelos Animais de Doenças , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/genética , Fibrose , Inflamação , Bleomicina/toxicidade
13.
Exp Eye Res ; 240: 109824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336167

RESUMO

Myopia is an independent risk factor for glaucoma, but the link between both conditions remains unknown. Both conditions induce connective tissue remodeling at the optic nerve head (ONH), including the peripapillary tissues. The purpose of this study was to investigate the thickness changes of the peripapillary tissues during experimental high myopia development in juvenile tree shrews. Six juvenile tree shrews experienced binocular normal vision, while nine received monocular -10D lens treatment starting at 24 days of visual experience (DVE) to induce high myopia in one eye and the other eye served as control. Daily refractive and biometric measurements and weekly optical coherence tomography scans of the ONH were obtained for five weeks. Peripapillary sclera (Scl), choroid-retinal pigment epithelium complex (Ch-RPE), retinal nerve fiber layer (RNFL), and remaining retinal layers (RRL) were auto-segmented using a deep learning algorithm after nonlinear distortion correction. Peripapillary thickness values were quantified from 3D reconstructed segmentations. All lens-treated eyes developed high myopia (-9.8 ± 1.5 D), significantly different (P < 0.001) from normal (0.69 ± 0.45 D) and control eyes (0.76 ± 1.44 D). Myopic eyes showed significant thinning of all peripapillary tissues compared to both, normal and control eyes (P < 0.001). At the experimental end point, the relative thinning from baseline was heterogeneous across tissues and significantly more pronounced in the Scl (-8.95 ± 3.1%) and Ch-RPE (-16.8 ± 5.8%) when compared to the RNFL (-5.5 ± 1.6%) and RRL (-6.7 ± 1.8%). Furthermore, while axial length increased significantly throughout the five weeks of lens wear, significant peripapillary tissue thinning occurred only during the first week of the experiment (until a refraction of -2.5 ± 1.9 D was reached) and ceased thereafter. A sectorial analysis revealed no clear pattern. In conclusion, our data show that in juvenile tree shrews, experimental high myopia induces significant and heterogeneous thinning of the peripapillary tissues, where the retina seems to be protected from profound thickness changes as seen in Ch-RPE and Scl. Peripapillary tissue thinning occurs early during high myopia development despite continued progression of axial elongation. The observed heterogeneous thinning may contribute to the increased risk for pathological optic nerve head remodeling and glaucoma later in life.


Assuntos
Glaucoma , Miopia , Animais , Humanos , Tupaiidae , Tupaia , Musaranhos , Miopia/etiologia , Retina , Tomografia de Coerência Óptica/métodos , Glaucoma/complicações
14.
Artigo em Inglês | MEDLINE | ID: mdl-38215804

RESUMO

Flavin-containing monooxygenases (FMOs) are a family of important drug oxygenation enzymes that, in humans, consist of five functional enzymes (FMO1-5) and a pseudogene (FMO6P). The tree shrew is a non-rodent primate-like species that is used in various biomedical studies, but its usefulness in drug metabolism research has not yet been investigated. In this study, tree shrew FMO1-6 cDNAs were isolated and characterized by sequence analysis, tissue expression, and metabolic function. Compared with human FMOs, tree shrew FMOs showed sequence identities of 85-90 % and 81-89 %, respectively, for cDNA and amino acids. Phylogenetic analysis showed that each tree shrew and human FMO were closely clustered. The genomic and genetic structures of the FMO genes were conserved in tree shrews and humans. Among the five tissue types analyzed (lung, heart, kidney, small intestine, and liver), FMO3 and FMO1 mRNAs were most abundant in liver and kidney, respectively. Recombinant tree shrew FMO1-6 proteins expressed in bacterial membranes all mediated benzydamine and trimethylamine N-oxygenations and methyl p-tolyl sulfide S-oxygenation. The selective human FMO3 substrate trimethylamine was predominantly metabolized by tree shrew FMO3. Additionally, tree shrew FMO6 was active toward trimethylamine, as is cynomolgus macaque FMO6, in contrast with the absence of activity of the human FMO6P pseudogene product. Tree shrew FMO1-6, which are orthologous to human FMOs (FMO1-5 and FMO6P) were identified, and tree shrew FMO3 has functional and molecular features generally comparable to those of human FMO3 as the predominant FMO in liver.


Assuntos
Metilaminas , Tupaia , Tupaiidae , Animais , Humanos , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , Oxigenases/genética , Oxigenases/metabolismo , Microssomos Hepáticos , Proteínas Recombinantes/metabolismo , DNA Complementar
15.
Virol J ; 21(1): 4, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178220

RESUMO

BACKGROUND: Cross-species transmission of zoonotic IAVs to humans is potentially widespread and lethal, posing a great threat to human health, and their cross-species transmission mechanism has attracted much attention. miRNAs have been shown to be involved in the regulation of IAVs infection and immunity, however, few studies have focused on the molecular mechanisms underlying miRNAs and mRNAs expression after IAVs cross-species infection. METHODS: We used tree shrews, a close relative of primates, as a model and used RNA-Seq and bioinformatics tools to analyze the expression profiles of DEMs and DEGs in the nasal turbinate tissue at different time points after the newly emerged swine influenza A virus SW2783 cross-species infection with tree shrews, and miRNA-mRNA interaction maps were constructed and verified by RT-qPCR, miRNA transfection and luciferase reporter assay. RESULTS: 14 DEMs were screened based on functional analysis and interaction map, miR-760-3p, miR-449b-2, miR-30e-3p, and miR-429 were involved in the signal transduction process of replication and proliferation after infection, miR-324-3p, miR-1301-1, miR-103-1, miR-134-5p, miR-29a, miR-31, miR-16b, miR-34a, and miR-125b participate in negative feedback regulation of genes related to the immune function of the body to activate the antiviral immune response, and miR-106b-3p may be related to the cross-species infection potential of SW2783, and the expression level of these miRNAs varies in different days after infection. CONCLUSIONS: The miRNA regulatory networks were constructed and 14 DEMs were identified, some of them can affect the replication and proliferation of viruses by regulating signal transduction, while others can play an antiviral role by regulating the immune response. It indicates that abnormal expression of miRNAs plays a crucial role in the regulation of cross-species IAVs infection, which lays a solid foundation for further exploration of the molecular regulatory mechanism of miRNAs in IAVs cross-species infection and anti-influenza virus targets.


Assuntos
MicroRNAs , Animais , Humanos , Suínos , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Tupaia , Perfilação da Expressão Gênica , Tupaiidae/genética , Musaranhos , RNA Mensageiro
16.
Physiol Behav ; 276: 114474, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272107

RESUMO

Nausea is an uncomfortable sensation that accompanies many therapeutics, especially diabetes treatments involving glucagon-like peptide-1 receptor (GLP1R) agonists. Recent studies in mice have revealed that GLP1R-expressing neurons in the area postrema play critical roles in nausea. Here, we characterized a ligand-conjugated saporin that can efficiently ablate GLP1R+ cells from humans, mice, and the Suncus murinus, a small animal model capable of emesis. This new tool provides a strategy to manipulate specific neural pathways in the area postrema in the Suncus murinus and may help elucidate roles of area postrema GLP1R+ neurons in emesis during therapeutics involving GLP1R agonists.


Assuntos
Área Postrema , Receptor do Peptídeo Semelhante ao Glucagon 1 , Animais , Humanos , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Náusea , Neurônios/metabolismo , Vômito/metabolismo , Musaranhos
17.
Virulence ; 15(1): 2306795, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251668

RESUMO

Epstein-Barr virus (EBV) infection in humans is ubiquitous and associated with various diseases. Remodeling of the immune microenvironment is the primary cause of EBV infection and pathogenesis; however, the underlying mechanism has not been fully elucidated. In this study, we used whole-transcriptome RNA-Seq to detect mRNAs, long non-coding RNAs (lncRNA), and microRNA (miRNA) profiles in the control group, 3 days, and 28 days after EBV infection, based on the tree shrew model that we reported previously. First, we estimated the proportion of 22 cell types in each sample using CIBERSORT software and identified 18 high-confidence DElncRNAs related to immune microenvironment regulation after EBV infection. Functional enrichment analysis of these differentially expressed lncRNAs primarily focused on the autophagy, endocytosis, and ferroptosis signalling pathways. Moreover, EBV infection affects miRNA expression patterns, and many miRNAs are silenced. Finally, three competing endogenous RNA regulatory networks were built using lncRNAs that significantly correlated with immune cell types, miRNAs that responded to EBV infection, and potentially targeted the mRNA of the miRNAs. Among them, MRPL42-AS-5 might act as an hsa-miR-296-5p "sponge" and compete with target mRNAs, thus increasing mRNA expression level, which could induce immune cell infiltration through the cellular senescence signalling pathway against EBV infection. Overall, we conducted a complete transcriptomic analysis of EBV infection in vivo for the first time and provided a novel perspective for further investigation of EBV-host interactions.


Assuntos
Infecções por Vírus Epstein-Barr , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , RNA Endógeno Competitivo , Tupaia/genética , Tupaia/metabolismo , RNA-Seq , Tupaiidae/genética , Tupaiidae/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Redes Reguladoras de Genes
18.
J Adv Res ; 56: 157-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37037373

RESUMO

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure, with substantial attributable morbidity and mortality. The small animal models that are currently used for ARDS do not fully manifest all of the pathological hallmarks of human patients, which hampers both the studies of disease mechanism and drug development. OBJECTIVES: To examine whether the phenotypic changes of primate-like tree shrews in response to a one-hit lipopolysaccharides (LPS) injury resemble human ARDS features. METHODS: LPS was administered to tree shrews through intratracheal instillation; then, the animals underwent CT or PET/CT imaging to examine the changes in the structure and function of the whole lung. The lung histology was analyzed by H&E staining and immunohistochemical staining of inflammatory cells. RESULTS: Results demonstrated that tree shrews exhibited an average survival time of 3-5 days after LPS insult, as well as an obvious symptom of dyspnea before death. The ratios of PaO2 to FiO2 (P/F ratio) were close to those of moderate ARDS in humans. CT imaging showed that the scope of the lung injury in tree shrews after LPS treatment were extensive. PET/CT imaging with 18F-FDG displayed an obvious inflammatory infiltration. Histological analysis detected the formation of a hyaline membrane, which is usually present in human ARDS. CONCLUSION: This study established a lung injury model with a primate-like small animal model and confirmed that they have similar features to human ARDS, which might provide a valuable tool for translational research.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Lipopolissacarídeos/toxicidade , Tupaia , Tupaiidae , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Musaranhos , Modelos Animais de Doenças , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Primatas
19.
Mol Neurobiol ; 61(4): 1892-1906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37814108

RESUMO

Alzheimer's disease (AD) is the most common chronic progressive neurodegenerative disease in the elderly. It has an increasing prevalence and a growing health burden. One of the limitations in studying AD is the lack of animal models that show features of Alzheimer's pathogenesis. The tree shrew has a much closer genetic affinity to primates than to rodents and has great potential to be used for research into aging and AD. In this study, we aimed to investigate whether tree shrews naturally develop cognitive impairment and major AD-like pathologies with increasing age. Pole-board and novel object recognition tests were used to assess the cognitive performance of adult (about 1 year old) and aged (6 years old or older) tree shrews. The main AD-like pathologies were assessed by Western blotting, immunohistochemical staining, immunofluorescence staining, and Nissl staining. Our results showed that the aged tree shrews developed an impaired cognitive performance compared to the adult tree shrews. Moreover, the aged tree shrews exhibited several age-related phenotypes that are associated with AD, including increased levels of amyloid-ß (Aß) accumulation and phosphorylated tau protein, synaptic and neuronal loss, and reactive gliosis in the cortex and the hippocampal tissues. Our study provides further evidence that the tree shrew is a promising model for the study of aging and AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Idoso , Animais , Humanos , Criança , Lactente , Doença de Alzheimer/patologia , Tupaia/metabolismo , Tupaiidae/metabolismo , Musaranhos/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas tau/genética , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Cognição
20.
In Vitro Cell Dev Biol Anim ; 60(1): 36-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38127228

RESUMO

A method for the in vitro isolation, purification, identification, and induced differentiation of satellite cells from adult tree shrew skeletal muscle was established. The mixed enzyme digestion method and differential adhesion method were used to obtain skeletal muscle satellite cells, which were identified and induced to differentiate to verify their pluripotency. The use of a mixture of collagenase II, hyaluronidase IV, and DNase I is an efficient method for isolating adult tree shrew skeletal muscle satellite cells. The P3 generation of cells had good morphology, rapid proliferation, high viability, and an "S"-shaped growth curve. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence staining indicated that marker genes or proteins were expressed in skeletal muscle satellite cells. After myogenic differentiation was induced, multiple-nucleated myotubes were observed, and the MyHC protein was expressed. The expression of myogenic marker genes changed with the differentiation process. After the induction of adipogenic differentiation, orange-red lipid droplets were observed, and the expression of adipogenic marker genes increased gradually with the differentiation process. In summary, satellite cells from adult tree shrew skeletal muscle were successfully isolated using a mixed enzyme digestion method, and their potential for differentiation into myogenic and adipogenic cells was confirmed, laying a foundation for further in vitro study of tree shrew muscle damage.


Assuntos
Células Satélites de Músculo Esquelético , Tupaia , Animais , Tupaiidae , Células Cultivadas , Diferenciação Celular/fisiologia , Músculo Esquelético , Fibras Musculares Esqueléticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...