Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.663
Filtrar
1.
Glycobiology ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244665

RESUMO

Lipooligosaccharides (LOS) are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their LOS with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides (LOS) at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their LOS. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the LOS of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering (MOE) and Selective Exo-Enzymatic Labeling (SEEL), and that together they provide tools to modify, label, detect and visualize sialylation of bacterial LOS.

2.
J Anat ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245632

RESUMO

The alveolar surface of the lung is lined by an epithelium consisting of type I (AECI) and type II alveolar epithelial cells (AECII). This epithelium is covered by a liquid alveolar lining layer (ALL). Besides intra-alveolar surfactant, ALL also contains the alveolar epithelial glycocalyx on the apical side of AECI and AECII. To better understand the alveolar epithelial glycocalyx, its ultrastructural visualization by transmission electron microscopy is required. The aim of this study was to systematically re-evaluate routine cytochemical methods for visualization of the alveolar epithelial glycocalyx and specifically its glycan components. For this purpose, we used chemical fixation by vascular perfusion with aldehydes as a common routine approach in mice. After fixation, staining is needed for glycocalyx visualization. Cytochemical staining agents such as alcian blue, ruthenium red, and lanthanum nitrate were compared. In addition, SNL (Sambucus nigra lectin) and UEA1 (Ulex europaeus agglutinin I) were used for sialic acid and fucose-specific labeling. Alcian blue showed the strongest staining, with cloud-like structures, whereas ruthenium red appeared as thread-like structures. On the other hand, lanthanum nitrate did not stain the alveolar epithelial glycocalyx. For specific sialic acid and fucose labeling, both lectins presented a specific signal. In conclusion, these methods can be used routinely for assessing ultrastructural changes of the alveolar epithelial glycocalyx in experimental in vivo models under different physiological and pathological conditions. In addition, cytochemical staining by tissue massage and post-embedding lectin labeling after vascular perfusion support 3R (reduction, refinement, replacement) principles of animal welfare.

4.
Glia ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228105

RESUMO

Sialylation plays an important role in self-recognition, as well as keeping the complement and innate immune systems in check. It is unclear whether the reduced sialylation seen during aging and in mice heterozygous for the null mutant of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (Gne+/-), an essential enzyme for sialic acid biosynthesis, contributes to retinal inflammation and degeneration. We found a reduction of polysialic acid and trisialic acid expression in several retinal layers in Gne+/- mice at 9 months of age compared to Gne+/+ wildtype (WT) mice, which was associated with a higher microglial expression of the lysosomal marker CD68. Furthermore, the total number of rod bipolar cells was reduced in 12 months old Gne+/- mice in comparison to WT mice, demonstrating loss of these retinal interneurons. Transcriptome analysis showed up-regulation of complement, inflammation, and apoptosis-related pathways in the retinas of Gne+/- mice. Particularly, increased gene transcript levels of the complement factors C3 and C4 and the pro-inflammatory cytokine Il-1ß were observed by semi-quantitative real-time polymerase chain reaction (sqRT-PCR) in 9 months old Gne+/- mice compared to WT mice. The increased expression of CD68, loss of rod bipolar cells, and increased gene transcription of complement factor C4, were all prevented after crossing Gne+/- mice with complement factor C3-deficient animals. In conclusion, our data show that retinal hyposialylation in 9 and 12 months old Gne+/- mice was associated with complement-related inflammation and lysosomal microglia response, as well as rod bipolar cells loss, which was absent after genetic deletion of complement factor C3.

5.
J Biol Chem ; : 107697, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173950

RESUMO

To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and three-dimensional (3D) TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.

6.
J Liposome Res ; : 1-15, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138909

RESUMO

Taxane drugs are clinically used for the treatment of many types of cancers due to their excellent antitumor effects. However, the surfactants contained in the injections currently used in the clinic may have serious toxic side effects on the organism, making it necessary to develop new dosage forms. Cationic liposomes have been widely used in antitumor research because of their advantage of preferentially targeting tumor neovascularization, but antitumor by targeting tumor vasculature alone does not necessarily provide good results. Malignant tumors represent complex ecosystems, tumor-associated macrophages (TAMs) and tumor endothelial cells (TECs) in the tumor microenvironment play crucial roles in tumor growth. Therefore, given the ability to achieve active targeting of TAMs and TECs by using sialic acid (SA) as a targeting material, the potential of cationic nanoformulations to preferentially target neovascularization at the tumor site, and the excellent antitumor effects of the taxane drugs docetaxel (DOC), in the present study, sialic acid-cholesterol coupling (SA-CH) was selected as a targeting material to prepare a DOC cationic liposome (DOC-SAL) for tumor therapy. The results of the study showed that DOC-SAL had the strongest drug accumulation in tumor tissues compared with the common DOC formulations, and was able to effectively reduce the colonization of TAMs, inhibit the proliferation of tumor cells, and have the best tumor-suppressing effect. In addition, DOC-SAL was able to improve the internal microenvironment of tumors by modulating cytokines. In summary, this drug delivery system has good anti-tumor effects and provides a new option for tumor therapy.

7.
Comput Biol Chem ; 113: 108189, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39216409

RESUMO

The avian influenza A H5N1 virus is a subtype of influenza A virus (IAV) that causes a highly infectious and severe respiratory illness in birds and poses significant economic losses in poultry farming. To infect host cell, the virus uses its surface glycoprotein named Hemagglutinin (HA) to recognize and to interact with the host cell receptor containing either α2,6- (SAα2,6 Gal) or α2,3-linked Sialic Acid (SAα2,3 Gal). The H5N1 virus has not yet acquired the capability for efficient human-to-human transmission. However, studies have demonstrated that even a single amino acid substitution in the HA can switch its glycan receptor preference from the avian-type SAα2,3 Gal to the human-type SAα2,6 Gal. The present study aims to explain the underlying mechanism of a mutation (D94N) on the H5 HA that causes the protein to change its glycan receptor-binding preference using molecular dynamics (MD) simulations. Our results reveal that the mutation alters the electrostatic interactions pattern near the HA receptor binding pocket, leading to a reduced stability for the HA-avian-type SAα2,3 Gal complex. On the other hand, the detrimental effect of the mutation D94N is not observed in the HA-human-type SAα2,6 Gal complex due to the glycan's capability to switch its topology.

8.
Microb Pathog ; 194: 106839, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103126

RESUMO

Histophilus somni is an important pathogen of the bovine respiratory disease complex, yet the mechanisms underlying its virulence remain poorly understood. It is known that H. somni can incorporate sialic acid into lipooligosaccharide (LOS), and sialylated H. somni is more resistant to phagocytosis and complement-mediated killing by serum compared to non-sialylated bacteria in vitro. However, the virulence of non-sialylated H. somni has not been evaluated in vivo using an animal model. In this study, we investigated the contribution of sialic acid to virulence by constructing an H. somni sialic acid uptake mutant (ΔnanP-ΔnanU) and comparing the parent and mutant strains in a mouse septicemia and mortality model. Intraperitoneal challenge of mice with wildtype H. somni (1 × 108 colony forming units/mouse, CFU) was lethal to all animals. Mice challenged with three different doses (1, 2, or 5 × 108 CFU/mouse) of an H. somni ΔnanP-ΔnanU sialic acid uptake mutant exhibited survival rates of 90 %, 60 %, and 0 % respectively. High-performance anion exchange chromatography analyses revealed that LOS prepared from both parent and the ΔnanP-ΔnanU mutant strains of H. somni were sialylated. These findings suggest the presence of de novo sialic acid synthesis pathway, although the genes associated with de novo sialic acid synthesis (neuB and neuC) were not identified by genomic analysis. The lower attenuation in mice is most likely attributed to the sialylated LOS of H. somni nanPU mutant.


Assuntos
Modelos Animais de Doenças , Lipopolissacarídeos , Ácido N-Acetilneuramínico , Pasteurellaceae , Sepse , Animais , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Pasteurellaceae/genética , Pasteurellaceae/patogenicidade , Pasteurellaceae/metabolismo , Virulência/genética , Sepse/microbiologia , Sepse/mortalidade , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/genética , Feminino , Mutação , Bovinos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Emerg Infect Dis ; 30(9): 1907-1911, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127127

RESUMO

An outbreak of influenza A (H5N1) virus was detected in dairy cows in the United States. We detected influenza A virus sialic acid -α2,3/α2,6-galactose host receptors in bovine mammary glands by lectin histochemistry. Our results provide a rationale for the high levels of H5N1 virus in milk from infected cows.


Assuntos
Glândulas Mamárias Animais , Infecções por Orthomyxoviridae , Receptores Virais , Animais , Bovinos , Glândulas Mamárias Animais/virologia , Feminino , Receptores Virais/metabolismo , Humanos , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Virus da Influenza A Subtipo H5N1 , Doenças dos Bovinos/virologia , Influenza Humana/virologia , Leite/virologia , Receptores de Superfície Celular/metabolismo , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves/virologia
10.
Front Oncol ; 14: 1432333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104719

RESUMO

Introduction: Ovarian and other peritoneal cancers have a strong tendency to metastasize into the surrounding adipose tissue. This study describes an effect of the adipose microenvironment on upregulation of sialic acid-containing glycans in ovarian cancer (OC). Heterogeneous populations of glycosylated OC tumors converged to a highly sialylated cell state that regulates tumorigenesis in an immune-dependent manner. Methods: We modeled the adipose microenvironment by conditioning growth media with human patient-derived adipose tissue. OC cell lines grown in the presence vs. absence of adipose conditioned media (ACM) were characterized by transcriptomics, western blotting, and chemical biology glycan labeling methods. Fluorescence-activated cell sorting was used to separate adipose-driven upregulation of hypersialylated ("SNA-high") vs. hyposialylated ("SNA-low") OC subpopulations. The two subpopulations were characterized by further transcriptomic and quantitative polymerase chain reaction analyses, then injected into a syngeneic mouse model. Immune system involvement was implicated using wild type and athymic nude mice with a primary endpoint of overall survival. Results: Adipose conditioning resulted in upregulation of sialyltransferases ST3GAL1, ST6GAL1, ST6GALNAC3, and ST8Sia1. In culture, OC cells displayed two distinct sialylated subpopulations that were stable for up to 9 passages, suggesting inherent heterogeneity in sialylation that is maintained throughout cell division and media changes. OC tumors that implanted in the omental adipose tissue exclusively reprogrammed to the highly sialylated subpopulation. In wild type C57BL/6 mice, only the hypersialylated SNA-high subpopulation implanted in the adipose, whereas the hyposialylated SNA-low subpopulation failed to be tumorigenic (p=0.023, n=5). In the single case where SNA-low established a tumor, post-mortem analysis revealed reprogramming of the tumor to the SNA-high state in vivo. In athymic nude mice, both subpopulations rapidly formed tumors, implicating a role of the adaptive immune system. Conclusions: These findings suggest a model of glycan-dependent tumor evolution wherein the adipose microenvironment reprograms OC to a tumorigenic state that resists the adaptive immune system. Mechanistically, adipose factors upregulate sialyltransferases. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancer tumorigenesis and metastasis.

11.
Smart Med ; 3(2): e20230046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39188697

RESUMO

Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.

12.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39173029

RESUMO

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Assuntos
Esôfago , Sulfato de Queratano , Lectinas , Mucina-5B , Humanos , Ligantes , Mucina-5B/metabolismo , Mucina-5B/genética , Lectinas/metabolismo , Lectinas/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Esôfago/metabolismo , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B
13.
J Biol Chem ; 300(9): 107671, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128726

RESUMO

Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.

14.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092913

RESUMO

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Assuntos
Eritrócitos , Ácido N-Acetilneuramínico , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Animais , Ácido N-Acetilneuramínico/metabolismo , Humanos , Plasmodium yoelii/metabolismo , Camundongos , Proteína HN/metabolismo , Malária/parasitologia , Malária/metabolismo
15.
J Biol Chem ; 300(9): 107630, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098526

RESUMO

CD22 (also known as Siglec-2) is an inhibitory receptor expressed in B cells. CD22 specifically recognizes α2,6 sialic acid and interacts with α2,6 sialylated membrane proteins expressed on the same cell (cis-ligands) and those derived from outside of the cell (trans-ligands). Previously, CD22 cis-ligands were shown to regulate the activity of CD22, thereby regulating both BCR ligation-induced signaling and low-level "tonic" signaling in the absence of BCR ligation that regulates the survival and differentiation of B cells. Mouse CD22 prefers Neu5Gc to Neu5Ac thereby binding to α2,6-linked Neu5Gc with high affinity. Although human CD22 binds to a distinct α2,6 sialylated glycan with high affinity, expression of high-affinity ligands is regulated in a conserved and stringent manner. However, how high- versus low-affinity CD22 ligands regulate B cells is poorly understood. Here we demonstrate that the interaction of CD22 with the endogenous ligands enhances BCR ligation-induced signaling but reduces tonic signaling in Cmah-/- mouse B cells deficient in Neu5Gc as well as wild-type B cells. Moreover, Cmah-/- B cells do not show alterations in the phenotypes correlated to tonic signaling. These results indicate that low-affinity interaction of the CD22 cis-ligands with CD22 is sufficient for the regulation of B cell signaling, and suggest that expression of high-affinity CD22 ligands might be involved in the regulation of B cells by competing for the binding of CD22 with exogenous trans-ligands of CD22.

16.
Microbiol Spectr ; 12(9): e0099724, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39105587

RESUMO

We previously reported that a linear cationic 12-amino acid cell-penetrating peptide (CPP) was bactericidal for Neisseria gonorrhoeae. In this study, our objectives were to determine the effect of cyclization of the linear CPP on its antibacterial activity for N. gonorrhoeae and cytotoxicity for human cells. We compared the bactericidal effect of 4-hour treatment with the linear CPP to that of CPPs cyclized by a thioether or a disulfide bond on human challenge and multi-drug resistant (MDR) strains of N. gonorrhoeae grown in cell culture media with 10% fetal bovine serum (FBS). The effect of lipooligosaccharide (LOS) sialylation on bactericidal activity was analyzed. We determined the ability of the CPPs to treat human cells infected in vitro with N. gonorrhoeae, to reduce the inflammatory response of human monocytic cells to gonococci, to kill strains of three commensal Neisseria species, and to inhibit gonococcal biofilms. The cyclized CPPs killed 100% of gonococci from all strains at 100 µM and >90% at 20 µM and were more potent than the linear form. The thioether-linked but not the disulfide-linked CPP was less cytotoxic for human cervical cells compared to the linear CPP. LOS sialylation had minimal effect on bactericidal activity. In treating infected human cells, the thioether-linked CPP at 20 µM killed >60% of extra- and intracellular bacteria and reduced TNF-α expression by THP-1 cells. The potency of the CPPs for the pathogenic and the commensal Neisseria was similar. The thioether-linked CPP partially eradicated gonococcal biofilms. Future studies will focus on determining efficacy in the female mouse model of gonorrhea.IMPORTANCENeisseria gonorrhoeae remains a major cause of sexually transmitted infections with 82 million cases worldwide in 2020, and 710,151 confirmed cases in the US in 2021, up 25% from 2017. N. gonorrhoeae can infect multiple tissues including the urethra, cervix, rectum, pharynx, and conjunctiva. The most serious sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause pelvic inflammatory disease, chronic pelvic pain, and infertility in 10%-20% of women. Control of gonococcal infection is widely recognized as increasingly challenging due to the lack of any vaccine. N. gonorrhoeae has quickly developed resistance to all but one class of antibiotics and the emergence of multidrug-resistant strains could result in untreatable infections. As such, gonorrhea is classified by the Center for Disease Control (CDC) as an urgent public health threat. The research presented herein on new therapeutics for gonorrhea has identified a cyclic cell-penetrating peptide (CPP) as a potent molecule targeting N. gonorrhoeae.


Assuntos
Antibacterianos , Peptídeos Penetradores de Células , Gonorreia , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Humanos , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Camundongos , Feminino , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ciclização , Lipopolissacarídeos/metabolismo , Arginina/farmacologia , Arginina/química
17.
Anal Chim Acta ; 1318: 342945, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067924

RESUMO

BACKGROUND: In sharp contrast with analysis of N-glycan that can be prepared by PNGase F, O-glycan analysis remains challenging due to a lack of versatile and simple procedures, especially those mediating cleavage of O-glycans from proteins. Most N-glycans and O-glycans are modified with sialic acids at the non-reducing end and their glycosidic linkages are labile, making it difficult to measure glycans by mass spectrometric analysis. In addition, sialic acid residues present on glycan chains via α2,3-, α2,6-, and α2,8-linkages as structural isomers. RESULTS: In this study, we firstly established a direct and linkage-specific derivatization method for sialylated O-glycans on proteins via linkage-specific lactone-opening aminolysis. In this procedure, labile sialylated glycans were not only stabilized, but also allowed distinguishing between sialyl linkages. Furthermore, we revealed that general reductive ß-elimination was not useful for O-glycan cleavages with undesirable degradations of resulting methyl amides. Using ß-elimination in the presence of pyrazolone (PMP), with low pH despite alkali base concentration, SALSA-derivatized O-glycans could be cleaved with minimal degradations. Cleaved and PMP-labeled O-glycans could be efficiently prepared in an open reaction system at high temperature (evaporative BEP reaction) and detected by simple liquid-phase extraction. Moreover, in the evaporative BEP reaction by changing the alkali solution with LiOH, the lithiated O-glycans could be observed and provided a lot of fragment information reflecting the complex structure of the O-glycans. SIGNIFICANCE: Direct sialic acid linkage-specific derivatization of O-glycans on glycoproteins is simple protocol containing in-solution aminolysis-SALSA and acetonitrile precipitation for removal of excess reagents. Evaporative ß-elimination with pyrazolone makes possible intact O-linked glycan analysis just by liquid-phase extraction. These analytical methods established by the appropriate combination of direct-SALSA and evaporative ß-elimination will facilitate O-glycomic studies in various biological samples.


Assuntos
Polissacarídeos , Ácidos Siálicos , Polissacarídeos/química , Ácidos Siálicos/química
18.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980150

RESUMO

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Assuntos
Galinhas , Furões , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Perus , Animais , Perus/virologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Galinhas/virologia , Virulência , China/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/transmissão , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Eliminação de Partículas Virais , Replicação Viral , Zoonoses/virologia , Influenza Humana/virologia , Influenza Humana/transmissão
19.
Glycobiology ; 34(9)2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39041707

RESUMO

Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.


Assuntos
Ácidos Siálicos , Humanos , Ácidos Siálicos/metabolismo , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico
20.
Front Immunol ; 15: 1409461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979425

RESUMO

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by the destruction of platelets. Although it was long believed that the critical role of autoantibodies in platelet destruction, primarily through the Fc-dependent platelet clearance pathway, recent findings indicate that the significance of the Fc-independent platelet clearance pathway mediated by hepatocytes, thus shedding light on a previously obscure aspect of ITP pathogenesis. Within this context, the desialylation of platelets has emerged as a pivotal biochemical marker. Consequently, targeting platelet desialylation emerges as a novel therapeutic strategy in the pathogenesis of ITP. Notably, prevailing research has largely focused on antiplatelet antibodies and the glycosylation-associated mechanisms of platelet clearance, while comprehensive analysis of platelet desialylation remains scant. In response, we retrospectively discuss the historical progression, inducing factors, generation process, and molecular regulatory mechanisms underlying platelet desialylation in ITP pathogenesis. By systematically evaluating the most recent research findings, we contribute to a comprehensive understanding of the intricate processes involved. Moreover, our manuscript delves into the potential application of desialylation regulatory strategies in ITP therapy, heralding novel therapeutic avenues. In conclusion, this manuscript not only fills a critical void in existing literature but also paves the way for future research by establishing a systematic theoretical framework. By inspiring new research ideas and offering insights into the development of new therapeutic strategies and targeted drugs, our study is poised to significantly advance the clinical management of ITP.


Assuntos
Biomarcadores , Plaquetas , Púrpura Trombocitopênica Idiopática , Humanos , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/terapia , Plaquetas/metabolismo , Plaquetas/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA