Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763756

RESUMO

In cyanobacteria that perform oxygenic photosynthesis, alternative sigma factors can play critical roles in environmental acclimation at the transcriptional initiation step. Here, we found in Synechococcus elongatus PCC 7942 that transcription of the pilA1 gene, encoding the type IV pilin, is dependent on one of the group 3 sigma factors, SigF1. We analyzed the promoter sequence determinants and proposed herein that the -10 and -35 boxes upstream of the transcriptional start site are critical for transcription. Interestingly, while the pilA1 promoter is activated by illumination, RNA polymerase containing SigF1 is already located on the promoter region under dark conditions, prior to illumination. This strongly suggests that promoter activation by light follows the recruitment of RNA polymerase during transcriptional initiation.

2.
J Biol Chem ; 300(3): 105764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367670

RESUMO

In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.


Assuntos
Proteínas de Bactérias , Complexo IV da Cadeia de Transporte de Elétrons , Mycobacterium smegmatis , Fator sigma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
3.
J Microbiol ; 61(3): 297-315, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36847970

RESUMO

Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Transdução de Sinais , Respiração , Regulação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
4.
Comput Struct Biotechnol J ; 20: 6214-6236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420162

RESUMO

The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.

5.
Front Microbiol ; 11: 588487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304334

RESUMO

The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa 3 mutant strain lacking the aa 3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.

6.
J Bacteriol ; 201(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570530

RESUMO

The glpD (MSMEG_6761) gene encoding glycerol-3-phosphate dehydrogenase was shown to be crucial for M. smegmatis to utilize glycerol as the sole carbon source. The glpD gene likely forms the glpFKD operon together with glpF and glpK, encoding a glycerol facilitator and glycerol kinase, respectively. The gylR (MSMEG_6757) gene, whose product belongs to the IclR family of transcriptional regulators, was identified 182 bp upstream of glpF It was demonstrated that GylR serves as a transcriptional activator and is involved in the induction of glpFKD expression in the presence of glycerol. Three GylR-binding sites with the consensus sequence (GKTCGRC-N3-GYCGAMC) were identified in the upstream region of glpF by DNase I footprinting analysis. The presence of glycerol-3-phosphate was shown to decrease the binding affinity of GylR to the glpF upstream region with changes in the quaternary structure of GylR from tetramer to dimer. Besides GylR, cAMP receptor protein (Crp) and an alternative sigma factor, SigF, are also implicated in the regulation of glpFKD expression. Crp functions as a repressor, while SigF induces expression of glpFKD under energy-limiting conditions. In conclusion, we suggest here that the glpFKD operon is under the tripartite control of GylR, SigF, and Crp, which enables M. smegmatis to integrate the availability of glycerol, cellular energy state, and cellular levels of cAMP to exquisitely control expression of the glpFKD operon involved in glycerol metabolism.IMPORTANCE Using genetic approaches, we first revealed that glycerol is catabolized through the glycolytic pathway after conversion to dihydroxyacetone phosphate in two sequential reactions catalyzed by glycerol kinase (GlpK) and flavin adenine dinucleotide (FAD)-containing glycerol-3-phosphate dehydrogenase (GlpD) in M. smegmatis Our study also revealed that in addition to the GylR transcriptional activator that mediates the induction of the glpFKD operon by glycerol, the operon is regulated by SigF and Crp, which reflect the cellular energy state and cAMP level, respectively.


Assuntos
Proteínas de Bactérias/fisiologia , Proteína Receptora de AMP Cíclico/fisiologia , Regulação Bacteriana da Expressão Gênica , Glicerol Quinase/fisiologia , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/fisiologia , Mycobacterium smegmatis/metabolismo , Óperon , Fator sigma/fisiologia , Fatores de Transcrição/fisiologia , Ácidos Glicéricos/farmacologia , Mycobacterium smegmatis/genética
7.
Military Medical Sciences ; (12): 199-204, 2017.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-513771

RESUMO

Objective To construct sigF deletion mutant of Bacillus anthracis and the complementary strain of sigF deletion mutant in order to analyze the effect of losing sigF on formation of spores.Methods The spectinomycinadenyltransferase gene(spc) was inserted to replace sigF of B.anthracis by homologous recombination.A plasmid which contained sigF and sigF promotor was constructed and then transferred to the mutant to get a complementary strain of sigF deletion mutant.The characters of the mutant were analyzed by measuring growth curves, the ability of carbohydrate metabolism was compared, and spore formation was observed under a microscope.Results The sigF deletion strain A16D2△sigF was constructed from A16D2,which had a similar growth rate to the wild type A16D2 in logarithmic phase, but was not significantly different from the initial strain in the ability to use carbohydrates,although unable to form spores.The strain was found to maintain the state of asymmetric division by microfluidics experiment.Conclusion It is showed by this study that sigF is the essential gene of B.anthracis for spore formation, but not essential for vegetative growth.

8.
Microbiologyopen ; 4(6): 896-916, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434659

RESUMO

In Mycobacterium smegmatis, sigF is widely expressed during different growth stages and plays role in adaptation to stationary phase and oxidative stress. Using a sigF deletion mutant of M. smegmatis mc(2) 155, we demonstrate that SigF is not essential for growth of bacterium. Deletion of sigF results in loss of carotenoid pigmentation which rendered increased susceptibility to H2 O2 induced oxidative stress in M. smegmatis. SigF modulates the cell surface architecture and lipid biosynthesis extending the repertoire of SigF function in this species. M. smegmatis SigF regulon included variety of genes expressed during exponential and stationary phases of growth and those responsible for oxidative stress, lipid biosynthesis, energy, and central intermediary metabolism. Furthermore, we report the identification of a SigF antagonist, an anti-sigma factor (RsbW), which upon overexpression in M. smegmatis wild type strain produced a phenotype similar to M. smegmatis mc(2) 155 ΔsigF strain. The SigF-anti-SigF interaction is duly validated using bacterial two-hybrid and pull down assays. In addition, anti-sigma factor antagonists, RsfA and RsfB were identified and their interactions with anti-sigma factor were experimentally validated. Identification of these proteins will help decode regulatory circuit of this alternate sigma factor.


Assuntos
Proteínas de Bactérias/genética , Carotenoides/biossíntese , Proteínas de Transporte/genética , Mutação , Mycobacterium smegmatis/metabolismo , Regulon , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Estresse Oxidativo , Fenótipo , Fator sigma/metabolismo
9.
FEMS Microbiol Lett ; 362(3): 1-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25673658

RESUMO

Bacteria can utilize multiple sources of carbon for growth, and for pathogenic bacteria like Mycobacterium tuberculosis, this ability is crucial for survival within the host. In addition, phenotypic changes are seen in mycobacteria grown under different carbon sources. In this study, we use Raman spectroscopy to analyze the biochemical components present in M. smegmatis cells when grown in three differently metabolized carbon sources. Our results show that carotenoid biosynthesis is enhanced when M. smegmatis is grown in glucose compared to glycerol and acetate. We demonstrate that this difference is most likely due to transcriptional upregulation of the carotenoid biosynthesis operon (crt) mediated by higher levels of the stress-responsive sigma factor SigF. Moreover, we find that increased SigF and carotenoid levels correlate with greater resistance of glucose-grown cells to oxidative stress. Thus, we demonstrate the use of Raman spectroscopy in unraveling unknown aspects of mycobacterial physiology and describe a novel effect of carbon source variation on mycobacteria.


Assuntos
Carbono/metabolismo , Carotenoides/biossíntese , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Análise Espectral Raman/métodos , Acetatos/metabolismo , Proteínas de Bactérias/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Mycobacterium smegmatis/genética , Óperon , Estresse Oxidativo , Regiões Promotoras Genéticas , Fator sigma/metabolismo
10.
Front Microbiol ; 5: 800, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25642228

RESUMO

Hydrogen peroxide (H2O2) is one of a variety of reactive oxygen species (ROS) produced by aerobic organisms. Host production of toxic H2O2 in response to pathogen infection is an important classical innate defense mechanism against invading microbes. Understanding the mechanisms by which pathogens, in response to oxidative stress, mediate defense against toxic ROS, can reveal anti-microbial targets and shed light on pathogenic mechanisms. In this study, we provide evidence that a Mycobacterium smegmatis hemerythrin-like protein MSMEG_2415, designated MsmHr, is a H2O2-modulated repressor of the SigF-mediated response to H2O2. Circular dichroism and spectrophotometric analysis of MsmHr revealed properties characteristic of a typical hemerythrin-like protein. An msmHr knockout strain of M. smegmatis mc(2)155 (ΔmsmHr) was more resistant to H2O2 than its parental strain, and overexpression of MsmHr increased mycobacterial susceptibility to H2O2. Mutagenesis studies revealed that the hemerythrin domain of MsmHr is required for the regulation of the H2O2 response observed in the overexpression study. We show that MsmHr inhibits the expression of SigF (MSMEG_1804), an alternative sigma factor that plays an important role in bacterial oxidative stress responses, including those elicited by H2O2, thus providing a mechanistic link between ΔmsmHr and its enhanced resistance to H2O2. Together, these results strongly suggest that MsmHr is involved in the response of mycobacteria to H2O2 by negatively regulating a sigma factor, a function not previously described for hemerythrins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...