Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892993

RESUMO

According to the single-mode approximation applied to two different mo des, each associated with different uniformly accelerating reference frames, we present analytical expression of the Minkowski states for both the ground and first excited states. Applying such an approximation, we study the entanglement property of Bell and Greenberger-Horne-Zeilinger (GHZ) states formed by such states. The corresponding entanglement properties are described by studying negativity and von Neumann entropy. The degree of entanglement will be degraded when the acceleration parameters increase. We find that the greater the number of particles in the entangled system, the more stable the system that is studied by the von Neumann entropy. The present results will be reduced to those in the case of the uniformly accelerating reference frame.

2.
Foods ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34441679

RESUMO

Non-uniform temperature distribution within solid food is a major problem associated with microwave heating, which limits industrial applications. Therefore, an experimentally validated 3D model was proposed to study the effect of microwave applicator geometry on the electromagnetic field distribution and heating pattern of shrimp under different processing conditions. Simulation results were compared with physical experiments, in which a cooked peeled shrimp sample was heated using two different laboratory-scale microwave applicators (rectangular and cylindrical cavities). For the rectangular applicator, the temperature distribution within the shrimp, when examined in cross-section, was more homogeneous compared to that of the cylindrical applicator. The results showed the influence of the complex shape of the food on the temperature distribution during microwave heating, as well as of process parameters (input power and geometry cavity). Moreover, this modelling method could provide a better understanding of the microwave heating process and assist manufacturing companies to evaluate a suitable microwave applicator according to their specific purpose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA