Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39205640

RESUMO

Quantitating exercise ventilatory and gas exchange dynamics affords insights into physiological control processes and cardiopulmonary dysfunction. We designed a novel waveform, the chirp waveform, to efficiently extract moderate intensity exercise response dynamics. In the chirp waveform, work rate fluctuates sinusoidally with constant amplitude as sinusoidal period decreases progressively from approximately 8.5 to 1.4 minutes over 30 minutes of cycle ergometry. We hypothesized that response dynamics of pulmonary ventilation (V̇E) and gas exchange (V̇O2 and V̇CO2) extracted from chirp waveform are similar to those obtained from step-wise transitions. Thirty-one participants (14 young-healthy, 7 older-healthy, 10 COPD patients) exercised on three occasions. Participants first performed ramp-incremental exercise for gas exchange threshold (GET) determination. In randomized order, the next two visits involved either chirp or step-wise waveforms. Work rate amplitude (20W to ∼95% GET work rate) and exercise duration (30 min) were the same for both waveforms. A first-order linear transfer function with system gain (G) and time constant (τ) characterized response dynamics. Agreement between model parameters extracted from chirp and step-wise waveforms was established using Bland-Altman analysis and Rothery's Concordance Coefficient (RCC). V̇E, V̇O2, and V̇CO2 Gs showed no systematic bias (p>0.178) and moderate-to-good agreement (RCC>0.772, p<0.01) between waveforms. Similarly, no systematic bias (p=0.815) and good agreement (RCC=0.837, p<0.001) was found for τV̇O2. Despite moderate agreement for τV̇CO2 (RCC=0.794, p<0.001) and τV̇E (RCC=0.722, p=0.083), chirp τ was less (-6.9(11.7)s and -12.2(22.5)s, respectively). We conclude that the chirp waveform is a promising method for measuring exercise response dynamics and investigating physiological control mechanisms.

2.
Respir Physiol Neurobiol ; 289: 103652, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677090

RESUMO

This study aimed at investigating whether: 1) different sinusoidal linear drifts would affect the estimation of the dynamic parameters amplitude (A) and phase lag (φ) of minute ventilation (V˙E), oxygen uptake, carbon dioxide production and heart rate (HR) sinusoidal responses when the frequency analysis technique (F) is performed; 2) the Marquardt-Levenberg non-linear fitting technique (ML) would provide more precise estimations of A and φ of drifted sinusoidal responses compared to F. For each cardiorespiratory variable, fifteen responses to sinusoidal forcing of different sinusoidal periods were simulated by using a first-order dynamic linear model. A wide range of linear drifts were subsequently applied. A and φ were computed for all drifted and non-drifted responses by using both F (AF and φF) and ML (AML and φML). For non-drifted responses, no differences between AF vs AML and φF vs φML were found. Whereas AF and φF were affected by the sinusoidal linear drifts, AML and φML were not. Significant interaction effects (technique x drift) were found for A (P <  0.001; ƞP2 > 0.247) and φ (P <  0.001; ƞP2 > 0.851). Higher goodness of fit values were observed when using ML for drifted V˙E and HR responses only. The present findings suggest ML as a recommended technique to use when sinusoidal linear drifts occur during sinusoidal exercise, and provide new insights on how to analyse drifted cardiorespiratory sinusoidal responses.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Modelos Biológicos , Fenômenos Fisiológicos Respiratórios , Simulação por Computador , Humanos , Cinética , Troca Gasosa Pulmonar/fisiologia , Ventilação Pulmonar/fisiologia
3.
Eur J Appl Physiol ; 121(2): 583-596, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33165638

RESUMO

PURPOSE: Pedalling cadence influences respiratory frequency (fR) during exercise, with group III/IV muscle afferents possibly mediating its effect. However, it is unclear how exercise intensity affects the link between cadence and fR. We aimed to test the hypothesis that the effect of cadence on fR is moderated by exercise intensity, with interest in the underlying mechanisms. METHODS: Ten male cyclists performed a preliminary ramp incremental test and three sinusoidal experimental tests on separate visits. The experimental tests consisted of 16 min of sinusoidal variations in cadence between 115 and 55 rpm (sinusoidal period of 4 min) performed during passive exercise (PE), moderate exercise (ME) and heavy exercise (HE). The amplitude (A) and phase lag (φ) of the dependent variables were calculated. RESULTS: During PE, fR changed in proportion to variations in cadence (r = 0.85, P < 0.001; A = 3.9 ± 1.4 breaths·min-1; φ = - 5.3 ± 13.9 degrees). Conversely, the effect of cadence on fR was reduced during ME (r = 0.73, P < 0.001; A = 2.6 ± 1.3 breaths·min-1; φ = - 25.4 ± 26.3 degrees) and even more reduced during HE (r = 0.26, P < 0.001; A = 1.8 ± 1.0 breaths·min-1; φ = - 70.1 ± 44.5 degrees). No entrainment was found in any of the sinusoidal tests. CONCLUSION: The effect of pedalling cadence on fR is moderated by exercise intensity-it decreases with the increase in work rate-and seems to be mediated primarily by group III/IV muscle afferents, at least during passive exercise.


Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Taxa Respiratória/fisiologia , Adulto , Teste de Esforço/métodos , Pé/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Adulto Jovem
4.
J Physiol Sci ; 70(1): 23, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312251

RESUMO

PURPOSE: To quantify the dynamics of blood flow in brachial artery (BF-BA) in response to sinusoidal work rate (WR) leg cycling exercises of 2-, 4-, and 6-min periods and to examine their relationship with the forearm skin blood flow (SBF). METHODS: Seven healthy young male subjects performed upright leg ergometer exercise with a constant WR (mean sinusoidal WR) for 30 min followed by sinusoidal WR exercise of three different periods (number of repetitions): 2 min (7), 4 min (4), and 6 min (3). The WR fluctuated from 20 W to a peak WR corresponding to 60% peak oxygen uptake (VO2). We continuously measured pulmonary gas exchange, heart rate (HR), blood velocity and cross-sectional area of BA, and forearm SBF and sweating rate (SR). RESULTS: All variables were followed by the sinusoidal WR. The phases of the variables for gas exchange and central circulation, such as VO2 and HR with WR forcing were similar (e.g., phase shift (θ) in HR [°]: 2 min, 60 ± 7; 4 min, 45 ± 10; 6 min, 37 ± 8; mean ± SD) to previous study results, that is, a longer period showed a shorter θ and larger amplitude of responses. Contrarily, the BF-BA response showed anti-phase (approximately 180°) regardless of the period, whereas the θ of forearm SBF and SR were similar to gas exchange and central circulation. CONCLUSIONS: Inactive limb BF-BA during sinusoidal leg cycling exercise was out of phase relative to the regulation of O2-delivery to active muscles and thermoregulation. The response of BF-BA seems to not always reflect the response of forearm SBF in the downstream area.


Assuntos
Artéria Braquial/fisiologia , Exercício Físico/fisiologia , Antebraço/irrigação sanguínea , Perna (Membro)/irrigação sanguínea , Pele/irrigação sanguínea , Adulto , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Hemodinâmica , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Sudorese/fisiologia , Adulto Jovem
5.
Physiol Rep ; 6(21): e13908, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30393984

RESUMO

Differentiating between respiratory frequency (fR ) and tidal volume (VT ) may improve our understanding of exercise hyperpnoea because fR and VT seem to be regulated by different inputs. We designed a series of exercise manipulations to improve our understanding of how fR and VT are regulated during exercise. Twelve cyclists performed an incremental test and three randomized experimental sessions in separate visits. In two of the three experimental visits, participants performed a moderate-intensity sinusoidal test followed, after recovery, by a moderate-to-severe-intensity sinusoidal test. These two visits differed in the period of the sinusoid (2 min vs. 8 min). In the third experimental visit, participants performed a trapezoidal test where the workload was self-paced in order to match a predefined trapezoidal template of rating of perceived exertion (RPE). The results collectively reveal that fR changes more with RPE than with workload, gas exchange, VT or the amount of muscle activation. However, fR dissociates from RPE during moderate exercise. Both VT and minute ventilation ( V˙E ) showed a similar time course and a large correlation with V˙CO2 in all the tests. Nevertheless, V˙CO2 was associated more with V˙E than with VT because VT seems to adjust continuously on the basis of fR levels to match V˙E with V˙CO2 . The present findings provide novel insight into the differential control of fR and VT - and their unbalanced interdependence - during exercise. The emerging conceptual framework is expected to guide future research on the mechanisms underlying the long-debated issue of exercise hyperpnoea.


Assuntos
Exercício Físico/fisiologia , Consumo de Oxigênio , Taxa Respiratória , Adulto , Frequência Cardíaca , Humanos , Masculino , Músculo Esquelético/fisiologia , Percepção , Esforço Físico , Volume de Ventilação Pulmonar
6.
Physiol Rep ; 5(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28989117

RESUMO

To explore the control of the peripheral circulation of a nonworking upper limb during leg cycling exercise, blood flow (BF) dynamics in the brachial artery (BA) were determined using a sinusoidal work rate (WR) exercise. Ten healthy subjects performed upright leg cycling exercise at a constant WR for 30 min, followed by 16 min of sinusoidal WR consisting of 4-min periods of WR fluctuating between a minimum output of 20 W and a maximum output corresponding to ventilatory threshold (VT). Throughout the protocol, pulmonary gas exchange, heart rate (HR), mean arterial blood pressure (MAP), blood velocity (BV), and cross-sectional area of the BA, forearm skin BF (SBF), and sweating rate (SR) were measured. Each variable was fitted to a sinusoidal model with phase shift (θ) and amplitude (A). Nearly all variables closely fit a sinusoidal model. Variables relating to oxygen transport, such as VO2 and HR, followed the sinusoidal WR pattern with certain delays (θ: VO2; 51.4 ± 4.0°, HR; 41.8 ± 5.4°, mean ± SD). Conversely, BF response in the BA was approximately in antiphase (175.1 ± 28.9°) with a relatively large A, whereas the phase of forearm SBF was dissimilar (65.8 ± 35.9°). Thus, the change of BF through a conduit artery to the nonworking upper limb appears to be the reverse when WR fluctuates during sinusoidal leg exercise, and it appears unlikely that this could be ascribed exclusively to altering the downstream circulation to forearm skin.


Assuntos
Artéria Braquial/fisiologia , Exercício Físico , Perna (Membro)/fisiologia , Fluxo Sanguíneo Regional , Braço/irrigação sanguínea , Humanos , Masculino , Consumo de Oxigênio , Pele/irrigação sanguínea , Sudorese , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA