Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Biosci Bioeng ; 137(6): 480-486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604883

RESUMO

Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Transdução de Sinais , Engenharia Tecidual , Diferenciação Celular/efeitos dos fármacos , Animais , Engenharia Tecidual/métodos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Linhagem Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química
2.
Bioengineering (Basel) ; 11(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671754

RESUMO

Skeletal muscle tissue (SMT) has a highly hierarchical and anisotropic morphology, featuring aligned and parallel structures at multiple levels. Various factors, including trauma and disease conditions, can compromise the functionality of skeletal muscle. The in vitro modeling of SMT represents a useful tool for testing novel drugs and therapies. The successful replication of SMT native morphology demands scaffolds with an aligned anisotropic 3D architecture. In this work, a 3D PCL fibrous scaffold with aligned morphology was developed through the synergistic combination of Melt-Extrusion Additive Manufacturing (MEAM) and porogen leaching, utilizing PCL as the bulk material and PEG as the porogen. PCL/PEG blends with different polymer ratios (60/40, 50/50, 40/60) were produced and characterized through a DSC analysis. The MEAM process parameters and porogen leaching in bi-distilled water allowed for the development of a micrometric anisotropic fibrous structure with fiber diameters ranging from 10 to 100 µm, depending on PCL/PEG blend ratios. The fibrous scaffolds were coated with Gelatin type A to achieve a biomimetic coating for an in vitro cell culture and mechanically characterized via AFM. The 40/60 PCL/PEG scaffolds yielded the most homogeneous and smallest fibers and the greatest physiological stiffness. In vitro cell culture studies were performed by seeding C2C12 cells onto a selected scaffold, enabling their attachment, alignment, and myotube formation along the PCL fibers during a 14-day culture period. The resultant anisotropic scaffold morphology promoted SMT-like cell conformation, establishing a versatile platform for developing in vitro models of tissues with anisotropic morphology.

3.
Bull Exp Biol Med ; 176(4): 528-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492102

RESUMO

Reparative properties of infrared laser exposure are well known, but the effects of green laser light are little studied. We analyzed the effects of short (60 sec) and longer (180 sec) exposure to infrared (980 nm) and green (520 nm) laser on the number of activated myosatellite cells in the regenerating m. gastrocnemius of Wistar rats after infliction of an incision wound. Histological preparations were used for morphometric evaluation of myosatellite cells with MyoD+ nuclei. Increased numbers of MyoD+ nuclei were observed on days 3 and 7 after 60-sec exposure to infrared and green laser.


Assuntos
Células Satélites de Músculo Esquelético , Ratos , Animais , Ratos Wistar , Músculo Esquelético , Núcleo Celular
4.
J Funct Biomater ; 14(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37998102

RESUMO

Volumetric muscle loss (VML) is a traumatic injury where at least 20% of the mass of a skeletal muscle has been destroyed and functionality is lost. The standard treatment for VML, autologous tissue transfer, is limited as approximately 1 in 10 grafts fail because of necrosis or infection. Tissue engineering strategies seek to develop scaffolds that can regenerate injured muscles and restore functionality. Many of these scaffolds, however, are limited in their ability to restore muscle functionality because of an inability to promote the alignment of regenerating myofibers. For aligned myofibers to form on a scaffold, myoblasts infiltrate the scaffold and receive topographical cues to direct targeted myofiber growth. We seek to determine the optimal pore size for myoblast infiltration and differentiation. We developed a method of tuning the pore size within collagen scaffolds while inducing longitudinal alignment of these pores. Significantly different pore sizes were generated by adjusting the freezing rate of the scaffolds. Scaffolds frozen at -20 °C contained the largest pores. These scaffolds promoted the greatest level of cell infiltration and orientation in the direction of pore alignment. Further research will be conducted to induce higher levels of myofiber formation, to ultimately create an off-the-shelf treatment for VML injuries.

5.
Bull Exp Biol Med ; 175(5): 711-713, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37861902

RESUMO

The effectiveness of low-intensity red light on myofascial trigger points in skeletal muscle of mature rats was evaluated by electron microscopy and high-resolution respirometry. The revealed changes in mitochondrial ultrastructure and activity of the respiratory chain enzymes indicate the development of hypoxia in the simulation area. Under the influence of low-intensity red light on myofascial trigger points, a decrease in the number of destructively altered muscle fibers and stimulation of mitochondrial respiration were found. These findings indicate intracellular regeneration and the stimulating effect of low-intensity red light on plastic processes.


Assuntos
Síndromes da Dor Miofascial , Pontos-Gatilho , Ratos , Animais , Músculo Esquelético , Fibras Musculares Esqueléticas , Mitocôndrias
6.
Front Bioeng Biotechnol ; 11: 1245897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854885

RESUMO

Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.

7.
Bioengineering (Basel) ; 10(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37892962

RESUMO

Skeletal muscle tissue engineering (TE) and adipose tissue engineering have undergone significant progress in recent years. This review focuses on the key findings in these areas, particularly highlighting the integration of 3D bioprinting techniques to overcome challenges and enhance tissue regeneration. In skeletal muscle TE, 3D bioprinting enables the precise replication of muscle architecture. This addresses the need for the parallel alignment of cells and proper innervation. Satellite cells (SCs) and mesenchymal stem cells (MSCs) have been utilized, along with co-cultivation strategies for vascularization and innervation. Therefore, various printing methods and materials, including decellularized extracellular matrix (dECM), have been explored. Similarly, in adipose tissue engineering, 3D bioprinting has been employed to overcome the challenge of vascularization; addressing this challenge is vital for graft survival. Decellularized adipose tissue and biomimetic scaffolds have been used as biological inks, along with adipose-derived stem cells (ADSCs), to enhance graft survival. The integration of dECM and alginate bioinks has demonstrated improved adipocyte maturation and differentiation. These findings highlight the potential of 3D bioprinting techniques in skeletal muscle and adipose tissue engineering. By integrating specific cell types, biomaterials, and printing methods, significant progress has been made in tissue regeneration. However, challenges such as fabricating larger constructs, translating findings to human models, and obtaining regulatory approvals for cellular therapies remain to be addressed. Nonetheless, these advancements underscore the transformative impact of 3D bioprinting in tissue engineering research and its potential for future clinical applications.

8.
Biofabrication ; 15(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473749

RESUMO

In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.


Assuntos
Bioimpressão , Hidrogéis , Hidrogéis/química , Desenvolvimento Muscular/genética , Microfluídica , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Comput Biol Med ; 163: 107085, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399741

RESUMO

Obesity in children is related to the development of cardiometabolic complications later in life, where molecular changes of visceral adipose tissue (VAT) and skeletal muscle tissue (SMT) have been proven to be fundamental. The aim of this study is to unveil the gene expression architecture of both tissues in a cohort of Spanish boys with obesity, using a clustering method known as weighted gene co-expression network analysis. For this purpose, we have followed a multi-objective analytic pipeline consisting of three main approaches; identification of gene co-expression clusters associated with childhood obesity, individually in VAT and SMT (intra-tissue, approach I); identification of gene co-expression clusters associated with obesity-metabolic alterations, individually in VAT and SMT (intra-tissue, approach II); and identification of gene co-expression clusters associated with obesity-metabolic alterations simultaneously in VAT and SMT (inter-tissue, approach III). In both tissues, we identified independent and inter-tissue gene co-expression signatures associated with obesity and cardiovascular risk, some of which exceeded multiple-test correction filters. In these signatures, we could identify some central hub genes (e.g., NDUFB8, GUCY1B1, KCNMA1, NPR2, PPP3CC) participating in relevant metabolic pathways exceeding multiple-testing correction filters. We identified the central hub genes PIK3R2, PPP3C and PTPN5 associated with MAPK signaling and insulin resistance terms. This is the first time that these genes have been associated with childhood obesity in both tissues. Therefore, they could be potential novel molecular targets for drugs and health interventions, opening new lines of research on the personalized care in this pathology. This work generates interesting hypotheses about the transcriptomics alterations underlying metabolic health alterations in obesity in the pediatric population.


Assuntos
Doenças Cardiovasculares , Obesidade Infantil , Masculino , Humanos , Criança , Transcriptoma/genética , Obesidade Infantil/genética , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Perfilação da Expressão Gênica , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Músculo Esquelético , Doenças Cardiovasculares/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
10.
ACS Appl Bio Mater ; 6(7): 2712-2724, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37343191

RESUMO

Devices for in vitro culture of three-dimensional (3D) skeletal muscle tissues have multiple applications, including tissue engineering and muscle-powered biorobotics. In both cases, it is crucial to recreate a biomimetic environment by using tailored scaffolds at multiple length scales and to administer prodifferentiative biophysical stimuli (e.g., mechanical loading). On the contrary, there is an increasing need to develop flexible biohybrid robotic devices capable of maintaining their functionality beyond laboratory settings. In this study, we describe a stretchable and perfusable device to sustain cell culture and maintenance in a 3D scaffold. The device mimics the structure of a muscle connected to two tendons: Tendon-Muscle-Tendon (TMT). The TMT device is composed of a soft (E ∼ 6 kPa) porous (pore diameter: ∼650 µm) polyurethane scaffold, encased within a compliant silicone membrane to prevent medium evaporation. Two tendon-like hollow channels interface the scaffold with a fluidic circuit and a stretching device. We report an optimized protocol to sustain C2C12 adhesion by coating the scaffold with polydopamine and fibronectin. Then, we show the procedure for the soft scaffold inclusion in the TMT device, demonstrating the device's ability to bear multiple cycles of elongations, simulating a protocol for cell mechanical stimulation. By using computational fluid dynamic simulations, we show that a flow rate of 0.62 mL/min ensures a wall shear stress value safe for cells (<2 Pa) and 50% of scaffold coverage by an optimal fluid velocity. Finally, we demonstrate the effectiveness of the TMT device to sustain cell viability under perfusion for 24 h outside of the CO2 incubator. We believe that the proposed TMT device can be considered an interesting platform to combine several biophysical stimuli, aimed at boosting skeletal muscle tissue differentiation in vitro, opening chances for the development of muscle-powered biohybrid soft robots with long-term operability in real-world environments.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Músculo Esquelético , Diferenciação Celular
11.
J Agric Food Chem ; 71(23): 8952-8958, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37255271

RESUMO

l-Anserine, an imidazole peptide, has a variety of physiological activities, but its effects on skeletal muscle differentiation and muscle contractile force remain unknown. Thus, in this study, we investigated the effect of l-anserine on muscle differentiation and muscle contractile force in human skeletal muscle cells. In two-dimensional culture, 1 µM l-anserine significantly increased the myotube diameters (26.5 ± 1.71, 27.7 ± 1.08, and 28.8 ± 0.85 µm with 0, 0.1, and 1 µM l-anserine, respectively) and the expression levels of genes involved in muscle differentiation and the sarcomere structure. In three-dimensional culture, 1 µM l-anserine significantly increased the contractile force of engineered human skeletal muscle tissues cultured on a microdevice (1.99 ± 0.30, 2.17 ± 0.62, 2.66 ± 0.39, and 3.28 ± 0.85 µN with 0, 0.1, 0.5, and 1 µM l-anserine, respectively). l-Anserine also increased the myotube diameters and the proportion of myotubes with sarcomere structures in the cultured tissues. Furthermore, the histamine receptor 1 (H1R) antagonist attenuated the l-anserine-induced increase in the contractile force, suggesting the involvement of H1R in the mechanism of action of l-anserine. This study showed for the first time that l-anserine enhances muscle differentiation and muscle contractility via H1R.


Assuntos
Anserina , Fibras Musculares Esqueléticas , Humanos , Anserina/análise , Anserina/farmacologia , Músculo Esquelético , Contração Muscular , Diferenciação Celular
12.
Int J Colorectal Dis ; 38(1): 126, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171498

RESUMO

BACKGROUND AND AIMS: Body composition changes in patients with Crohn's disease (CD) have received increasing attention in recent years. This review aims to describe the changes in body composition in patients with CD on imaging and to analyze and summarize the prognostic value of body composition. METHODS: We systematically searched Web of Science, PubMed, Embase, Cochrane Library, and Medline via OVID for literature published before November 2022, and two researchers independently evaluated the quality of the retrieved literature. RESULTS: A total of 39 publications (32 cohort studies and 7 cross-sectional studies) involving 4219 patients with CD were retrieved. Imaging methods for body composition assessment, including dual-energy X-ray absorptiometry (DXA), computed tomography (CT) and magnetic resonance imaging (MRI), were included in this review. The study found that patients with CD typically have more visceral adipose tissue and less skeletal muscle mass, and the prevalence of sarcopenia and visceral obesity was significantly different in different studies (sarcopenia: 16-100%; visceral obesity: 5.3-30.5%). Available studies suggest that changes in the body composition of CD patients are significantly related to inflammatory status, disease behavior, poor outcomes, and drug efficacy. CONCLUSION: Altered body composition can be a significant predictor of poor outcomes for CD patients. Therefore, the body composition of CD patients may serve as a potential therapeutic target to help optimize disease management strategies in clinical practice.


Assuntos
Doença de Crohn , Sarcopenia , Humanos , Doença de Crohn/complicações , Doença de Crohn/diagnóstico por imagem , Obesidade Abdominal , Estudos Transversais , Composição Corporal
13.
Adv Healthc Mater ; 12(18): e2300151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36911914

RESUMO

Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Músculo Esquelético , Bioimpressão/métodos , Engenharia Tecidual/métodos , Impressão Tridimensional , Hidrogéis/química
15.
Cells Dev ; 173: 203826, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739913

RESUMO

Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.


Assuntos
Azacitidina , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/análise , Hidrogéis/química , Azacitidina/farmacologia , Matriz Extracelular/química , Ratos Wistar , Músculo Esquelético/fisiologia , DNA
16.
Tissue Eng Part A ; 29(9-10): 257-268, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606693

RESUMO

Skeletal muscle is highly adaptive to mechanical stress due to its resident stem cells and the pronounced level of myotube plasticity. Herein, we study the adaptation to mechanical stress and its underlying molecular mechanisms in a tissue-engineered skeletal muscle model. We subjected differentiated 3D skeletal muscle-like constructs to cyclic tensile stress using a custom-made bioreactor system, which resulted in immediate activation of stress-related signal transducers (Erk1/2, p38). Cell cycle re-entry, increased proliferation, and onset of myogenesis indicated subsequent myoblast activation. Furthermore, elevated focal adhesion kinase and ß-catenin activity in mechanically stressed constructs suggested increased cell adhesion and migration. After 3 days of mechanical stress, gene expression of the fusogenic markers MyoMaker and MyoMixer, myotube diameter, myonuclear accretion, as well as S6 activation, were significantly increased. Our results highlight that we established a promising tool to study sustained adaptation to mechanical stress in healthy, hypertrophic, or regenerating skeletal muscle. Impact statement Sustained adaption to mechanical stress presents a key feature for skeletal muscle functionality and growth. Knowledge of these processes, however, is mostly based on in vivo or 2D cell culture models, both of which entail significant shortcomings. Herein, we generated highly hypertrophic tissue-engineered skeletal muscle-like constructs that are comparable to the results of successful in vivo models of adaption to mechanical stimuli, achieving an outcome that only few in vitro approaches have reached. Second, we aimed at studying the underlying molecular mechanisms, which is of interest since there is little knowledge of the intracellular events during hypertrophy upon mechanical stimulation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular , Engenharia Tecidual/métodos , Hipertrofia/metabolismo
17.
Biofabrication ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689776

RESUMO

Three-dimensional (3D) bioprinting is an emerging technology, which turned out to be an optimal tool for tissue engineering approaches. To date, different printing systems have been developed. Among them, the extrusion-based approach demonstrated to be the most suitable for skeletal muscle tissue engineering, due to its ability to produce and deposit printing fibers in a parallel pattern that well mimic the native skeletal muscle tissue architecture. In tissue bioengineering, a key role is played by biomaterials, which must possess the key requisite of 'printability'. Nevertheless, this feature is not often well correlated with cell requirements, such as motives for cellular adhesion and/or absorbability. To overcome this hurdle, several efforts have been made to obtain an effective bioink by combining two different biomaterials in order to reach a good printability besides a suitable biological activity. However, despite being efficient, this strategy reveals several outcomes limitations. We report here the development and characterization of a novel extrusion-based 3D bioprinting system, and its application for correction of volumetric muscle loss (VML) injury in a mouse model. The developed bioprinting system is based on the use of PEG-Fibrinogen, a unique biomaterial with excellent biocompatibility, well-suited for skeletal muscle tissue engineering. With this approach, we obtained highly organized 3D constructs, in which murine muscle progenitors were able to differentiate into muscle fibers arranged in aligned bundles and capable of spontaneously contracting when culturedin vitro. Furthermore, to evaluate the potential of the developed system in future regenerative medicine applications, bioprinted constructs laden with either murine or human muscle progenitors were transplanted to regenerate theTibialis Anteriormuscle of a VML murine model, one month after grafting.


Assuntos
Bioimpressão , Engenharia Tecidual , Camundongos , Humanos , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais , Bioimpressão/métodos , Impressão Tridimensional , Músculo Esquelético , Materiais Biocompatíveis
18.
Biomech Model Mechanobiol ; 22(5): 1499-1514, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36550242

RESUMO

In this work, a three-dimensional model was developed to describe the passive mechanical behaviour of anisotropic skeletal muscle tissue. To validate the model, orientation-dependent axial ([Formula: see text], [Formula: see text], [Formula: see text]) and semi-confined compression experiments (mode I, II, III) were performed on soleus muscle tissue from rabbits. In the latter experiments, specimen deformation is prescribed in the loading direction and prevented in an additional spatial direction, fibre compression at [Formula: see text] (mode I), fibre elongation at [Formula: see text] (mode II) and a neutral state of the fibres at [Formula: see text] where their length is kept constant (mode III). Overall, the model can adequately describe the mechanical behaviour with a relatively small number of model parameters. The stiffest tissue response during orientation-dependent axial compression ([Formula: see text] kPa) occurs when the fibres are oriented perpendicular to the loading direction ([Formula: see text]) and are thus stretched during loading. Semi-confined compression experiments yielded the stiffest tissue ([Formula: see text] kPa) in mode II when the muscle fibres are stretched. The extensive data set collected in this study allows to study the different error measures depending on the deformation state or the combination of deformation states.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Animais , Coelhos , Estresse Mecânico , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia , Pressão
19.
Biology (Basel) ; 11(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36552216

RESUMO

A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.

20.
Materials (Basel) ; 15(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431432

RESUMO

Volumetric muscle loss (VML), which involves the loss of a substantial portion of muscle tissue, is one of the most serious acute skeletal muscle injuries in the military and civilian communities. The injured area in VML may be so severely affected that the body loses its innate capacity to regenerate new functional muscles. State-of-the-art biofabrication methods such as bioprinting provide the ability to develop cell-laden scaffolds that could significantly expedite tissue regeneration. Bioprinted cell-laden scaffolds can mimic the extracellular matrix and provide a bioactive environment wherein cells can spread, proliferate, and differentiate, leading to new skeletal muscle tissue regeneration at the defect site. In this study, we engineered alginate−gelatin composite inks that could be used as bioinks. Then, we used the inks in an extrusion printing method to develop design-specific scaffolds for potential VML treatment. Alginate concentration was varied between 4−12% w/v, while the gelatin concentration was maintained at 6% w/v. Rheological analysis indicated that the alginate−gelatin inks containing 12% w/v alginate and 6% w/v gelatin were most suitable for developing high-resolution scaffolds with good structural fidelity. The printing pressure and speed appeared to influence the printing accuracy of the resulting scaffolds significantly. All the hydrogel inks exhibited shear thinning properties and acceptable viscosities, though 8−12% w/v alginate inks displayed properties ideal for printing and cell proliferation. Alginate content, crosslinking concentration, and duration played significant roles (p < 0.05) in influencing the scaffolds' stiffness. Alginate scaffolds (12% w/v) crosslinked with 300, 400, or 500 mM calcium chloride (CaCl2) for 15 min yielded stiffness values in the range of 45−50 kPa, i.e., similar to skeletal muscle. The ionic strength of the crosslinking concentration and the alginate content significantly (p < 0.05) affected the swelling and degradation behavior of the scaffolds. Higher crosslinking concentration and alginate loading enhanced the swelling capacity and decreased the degradation kinetics of the printed scaffolds. Optimal CaCl2 crosslinking concentration (500 mM) and alginate content (12% w/v) led to high swelling (70%) and low degradation rates (28%) of the scaffolds. Overall, the results indicate that 12% w/v alginate and 6% w/v gelatin hydrogel inks are suitable as bioinks, and the printed scaffolds hold good potential for treating skeletal muscle defects such as VML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...