Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37631747

RESUMO

Developing a low-cost wireless energy meter with power quality measurements for smart grid applications represents a significant advance in efficient and accurate electric energy monitoring. In increasingly complex and interconnected electric systems, this device will be essential for a wide range of applications, such as smart grids, by introducing a real-time energy monitoring system. In light of this, smart meters can offer greater opportunities for sustainable and efficient energy use and improve the utilization of energy sources, especially those that are nonrenewable. According to the 2020 International Energy Agency (IEA) report, nonrenewable energy sources represent 65% of the global supply chain. The smart meter developed in this work is based on the ESP32 microcontroller and easily accessible components since it includes a user-friendly development platform that offers a cost-effective solution while ensuring reliable performance. The main objective of developing the smart meters was to enhance the software and simplify the hardware. Unlike traditional meters that calculate electrical parameters by means of complex circuits in hardware, this project performed the calculations directly on the microcontroller. This procedure reduced the complexity of the hardware by simplifying the meter design. Owing to the high-performance processing capability of the microcontroller, efficient and accurate calculations of electrical parameters could be achieved without the need for additional circuits. This software-driven approach with simplified hardware led to benefits, such as reduced production costs, lower energy consumption, and a meter with improved accuracy, as well as updates on flexibility. Furthermore, the integrated wireless connectivity in the microcontroller enables the collected data to be transmitted to remote monitoring systems for later analysis. The innovative feature of this smart meter lies in the fact that it has readily available components, along with the ESP32 chip, which results in a low-cost smart meter with performance that is comparable to other meters available on the market. Moreover, it is has the capacity to incorporate IoT and artificial intelligence applications. The developed smart meter is cost effective and energy efficient, and offers benefits with regard to flexibility, and thus represents an innovative, efficient, and versatile solution for smart grid applications.

2.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236316

RESUMO

The security of Smart Meter (SM) systems will be a challenge in the era of quantum computing because a quantum computer might exploit characteristics of well-established cryptographic schemes to reach a successful security breach. From a practical perspective, this paper focuses on the feasibility of implementing a quantum-secure lattice-based key encapsulation mechanism in a SM, hardware-constrained equipment. In this regard, the post-quantum cryptography (PQC) scheme, FrodoKEM, an alternate candidate for the National Institute for Standards and Technology (NIST) post-quantum standardization process, is implemented using a System-on-a-Chip (SoC) device in which the Field Programmable Gate Array (FPGA) component is exploited to accelerate the most time-consuming routines in this scheme. Experimental results show that the execution time to run the FrodoKEM scheme in an SoC device reduces to one-third of that obtained by the benchmark implementation (i.e., the software implementation). Also, the attained execution time and hardware resource usage of this SoC-based implementation of the FrodoKEM scheme show that lattice-based cryptography may fit into SM equipment.

3.
Sensors (Basel) ; 22(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236635

RESUMO

Electricity consumption is rising due to population growth, climate change, urbanization, and the increasing use of electronic devices. The trend of the Internet of Things has contributed to the creation of devices that promote the thrift and efficient use of electrical energy. Currently, most projects relating to this issue focus solely on monitoring energy consumption without providing relevant parameters or switching on/off electronic devices. Therefore, this paper presents in detail the design, construction, and validation of a smart meter with load control aimed at being part of a home energy management system. With its own electronic design, the proposal differs from others in many aspects. For example, it was developed using a simple IoT architecture with in-built WiFi technology to enable direct connection to the internet, while at the same time being big enough to be part of standardized electrical enclosures. Unlike other smart meters with load control, this one not only provides the amount of energy consumption, but rms current and voltage, active, reactive, and apparent power, reactive energy, and power factor-parameters that could be useful for future studies. In addition, this work presents evidence based on experimentation that the prototype in all its readings achieves an absolute percentage error of less than 1%. A real-life application of the device was also demonstrated in this document by measuring different appliances and switching them on/off manually and automatically using a web-deployed application.

4.
Sensors (Basel) ; 21(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451092

RESUMO

The Advanced Metering Infrastructure (AMI) data represent a source of information in real time not only about electricity consumption but also as an indicator of other social, demographic, and economic dynamics within a city. This paper presents a Data Analytics/Big Data framework applied to AMI data as a tool to leverage the potential of this data within the applications in a Smart City. The framework includes three fundamental aspects. First, the architectural view places AMI within the Smart Grids Architecture Model-SGAM. Second, the methodological view describes the transformation of raw data into knowledge represented by the DIKW hierarchy and the NIST Big Data interoperability model. Finally, a binding element between the two views is represented by human expertise and skills to obtain a deeper understanding of the results and transform knowledge into wisdom. Our new view faces the challenges arriving in energy markets by adding a binding element that gives support for optimal and efficient decision-making. To show how our framework works, we developed a case study. The case implements each component of the framework for a load forecasting application in a Colombian Retail Electricity Provider (REP). The MAPE for some of the REP's markets was less than 5%. In addition, the case shows the effect of the binding element as it raises new development alternatives and becomes a feedback mechanism for more assertive decision making.


Assuntos
Big Data , Ciência de Dados , Sistemas Computacionais , Eletricidade , Previsões , Humanos
5.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204334

RESUMO

This paper aims to present the analysis and development of a complete electronic smart meter that is able to perform four-quadrant measurements, act as a three-phase shunt active power filter (APF), and control three-phase induction motors by stator flux estimation. A transmission control protocol together with Internet protocol (TCP/IP) communication protocol for the remote access of measurement data is embedded into the application to securely transmit reliable information. An artificial neural network trained with particle swarm optimization is used for stator flux estimation, and a fuzzy logic controller is adopted to regulate the power converter DC bus voltage. The present work gathers knowledge from multidisciplinary fields, and all applied techniques have not been proposed altogether before. All control functions are embedded into a field-programmable gate array (FPGA) device, using VHSIC Hardware Description Language (VHDL), to enhance efficiency taking advantage of parallelism and high speed. An FPGA-in-the-loop cosimulation technique was first applied to prove the control functions' functionality, and, later, experimental evaluations are conducted to finally prove equipment operation and reliability.


Assuntos
Algoritmos , Lógica Fuzzy , Eletrônica , Redes Neurais de Computação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA