Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 48(2): 1851-1865, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29923242

RESUMO

The posterodorsal medial amygdala (MePD) is a sexually dimorphic area and plays a central role in the social behavior network of rats. Dendritic spines modulate synaptic processing and plasticity. Here, we compared the number and structure of dendritic spines in the MePD of prepubertal males and females and postpubertal males with and without sexual experience. Spines were classified and measured after three-dimensional image reconstruction using DiI fluorescent labeling and confocal microscopy. Significantly differences are as follows: (a) Prepubertal males have more proximal spines, stubby/wide spines with long length and large head diameter and thin and mushroom spines with wide neck and head diameters than prepubertal females, whereas (b) prepubertal females have more mushroom spines with long neck length than age-matched males. (c) In males, the number of thin spines reduces after puberty and, compared to sexually experienced counterparts, (d) naive males have short stubby/wide spines as well as mushroom spines with reduced neck diameter. In addition, (e) sexually experienced males have an increase in the number of mushroom spines, the length of stubby/wide spines, the head diameter of thin and stubby/wide spines and the neck diameter of thin and mushroom spines. These data indicate that a sexual dimorphism in the MePD dendritic spines is evident before adulthood and a spine-specific remodeling of number and shape can be brought about by both puberty and sexual experience. These fine-tuned ontogenetic, hormonally and experience-dependent changes in the MePD are relevant for plastic synaptic processing and the reproductive behavior of adult rats.


Assuntos
Complexo Nuclear Corticomedial/citologia , Espinhas Dendríticas/ultraestrutura , Plasticidade Neuronal/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Feminino , Masculino , Ratos , Ratos Wistar
2.
J Exp Biol ; 216(Pt 13): 2412-20, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761466

RESUMO

Agonistic behavior has shaped sociality across evolution. Though extremely diverse in types of displays and timing, agonistic encounters always follow the same conserved phases (evaluation, contest and post-resolution) and depend on homologous neural circuits modulated by the same neuroendocrine mediators across vertebrates. Among neuromodulators, serotonin (5-HT) is the main inhibitor of aggression, and arginine vasotocin (AVT) underlies sexual, individual and social context differences in behavior across vertebrate taxa. We aim to demonstrate that a distinct spatio-temporal pattern of activation of the social behavior network characterizes each type of aggression by exploring its modulation by both the 5-HT and AVT systems. We analyze the neuromodulation of aggression between the intermale reproduction-related aggression displayed by the gregarious Brachyhypopomus gauderio and the non-breeding intrasexual and intersexual territorial aggression displayed by the solitary Gymnotus omarorum. Differences in the telencephalic activity of 5-HT between species were paralleled by a differential serotonergic modulation through 1A receptors that inhibited aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio. AVT injection increased the motivation towards aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio, whereas the electric submission and dominance observed in G. omarorum and B. gauderio, respectively, were both AVT-dependent in a distinctive way. The advantages of our model species allowed us to identify precise target areas and mechanisms of the neuromodulation of two types of aggression that may represent more general and conserved strategies of the control of social behavior among vertebrates.


Assuntos
Agressão , Peixe Elétrico/fisiologia , Neurotransmissores/metabolismo , Serotonina/metabolismo , Vasotocina/metabolismo , Animais , Comportamento Animal , Feminino , Masculino , Comportamento Sexual Animal , Territorialidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA