Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Electrophoresis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687192

RESUMO

Residual substances that are considered hazardous to the recipient must be removed from final cellular therapeutic products manufactured for clinical purposes. In doing so, quality rules determined by competent authorities (CAs) for the clinical use of tissue- and cell-based products can be met. In our study, we carried out residual substance analyses, and purity determination studies of trypsin and trypsin inhibitor in clinically manufactured bone marrow-derived mesenchymal stromal/stem cell products, using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. Despite being a semiquantitative method, SDS-PAGE has several benefits over other methods for protein analysis, such as simplicity, convenience of use, and affordability. Due to its convenience and adaptability, SDS-PAGE is still a commonly used method in many laboratories, despite its limits in dynamic range and quantitative precision. Our goal in this work was to show that SDS-PAGE may be used effectively for protein measurement, especially where practicality and affordability are the major factors. The results of our study suggest a validated method to guide tissue and cell manufacturing sites for making use of an agreeable, accessible, and cost-effective method for residual substance analyses in clinically manufactured cellular therapies.

2.
Clin Exp Vaccine Res ; 12(3): 232-239, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37599802

RESUMO

Purpose: The purpose of this study was to compare the antigenic potency and stability of tetanus and diphtheria (Td) vaccines when combined with aluminum phosphate (AlPO4) and liposome adjuvants. Materials and Methods: In vitro and in vivo analyses were conducted using the single radial immunodiffusion method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Td vaccines were prepared with AlPO4 adsorption and liposome-mediated delivery, and protein antigens were characterized using these methods. Results: The results revealed that the liposome-mediated Td vaccines exhibited higher immunogenicity compared to the AlPO4-adsorbed Td vaccines. Additionally, the liposome-mediated Td vaccines demonstrated higher stability as native antigens. Conclusion: This study highlights the importance of utilizing liposome adjuvants in vaccine development. The liposome-mediated Td vaccines showed enhanced immunogenicity and stability, making them a promising approach for improving vaccine efficacy. Understanding and optimizing adjuvant strategies can contribute to the development of effective vaccines against various diseases.

3.
J Texture Stud ; 54(5): 659-670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37408518

RESUMO

The aim of this study was to determine the effects of processing on the quality, protein oxidation, and structural properties of yak meat. The cooking loss, Warner-Bratzler shear force, meat color, texture, thiobarbituric acid reactive substance, total carbonyl content (TCC), total sulfhydryl content (TSC), and structural properties of yak meat under frying, drying, and boiling were measured. The results showed that the cooking loss rate, shear force, L* value, hardness, elasticity, and chewiness of yak meat increased (p < .05) and the a* value decreased (p < .05) with increasing central temperature after processing. Fried yak meat at 80°C had the lowest cooking loss rate of 42.21% and the lowest shear force of 50.86 N, which had better textural characteristics, followed by boiling, while the maximum cooking loss rate, hardness, and shear force were 1.40 times, 1.26 times, and 1.2 times that of frying, respectively. The thiobarbituric acid reactive substance was obtained after decoction and peaked at 1.88 ± 0.04 mmol/mg at 60°C. The highest TCC and the lowest TSC were obtained for dried proteins at 80°C. In addition, as the central temperature increased, the helical structure in the protein secondary structure decreased, the disordered structure increased, the fluorescence intensity of myofibrillar proteins decreased, and protein degradation occurred. It was concluded that dried yak meat had the highest protein oxidation and the worst quality, while fried yak meat had the lowest protein oxidation and the best quality.

4.
Food Chem ; 424: 136414, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37236081

RESUMO

Celiac disease (CD) can be triggered in susceptible individuals by the consumption of gluten, a complex storage protein mixture present in wheat, rye and barley. There is no specific reference material (RM) available for barley and this leads to inaccurate quantitation of barley gluten in supposedly gluten-free foods. Therefore, the aim was to select representative barley cultivars to establish a new barley RM. The relative protein composition of the 35 barley cultivars averaged 25% albumins and globulins, 11% d-hordeins, 19% C-hordeins, and 45% B/γ-hordeins. The mean gluten and protein content was 7.2 g/100 g and 11.2 g/100 g, respectively. The prolamin/glutelin ratio (1:1) commonly used in ELISAs to calculate the gluten content was found to be inappropriate for barley (1.6 ± 0.6). Eight cultivars suitable as potential RMs were selected to ensure a typical barley protein composition and improve food safety for CD patients.


Assuntos
Doença Celíaca , Hordeum , Humanos , Glutens , Secale , Prolaminas
5.
Bioact Mater ; 24: 124-135, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36606255

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis among children worldwide, yet there is no vaccine for RSV disease. This study investigates the potential of cube and sphere-shaped cerium oxide nanoparticles (CNP) to modulate reactive oxygen (ROS) and nitrogen (RNS) species and immune cell phenotypes in the presence of RSV infection in vitro and in vivo. Cube and sphere-shaped CNP were synthesized by hydrothermal and ultrasonication methods, respectively. Physico-chemical characterization confirmed the shape of sphere and cube CNP and effect of various parameters on their particle size distribution and zeta potential. In vitro results revealed that sphere and cube CNP differentially modulated ROS and RNS levels in J774 macrophages. Specifically, cube CNP significantly reduced RSV-induced ROS levels without affecting RNS levels while sphere CNP increased RSV-induced RNS levels with minimal effect on ROS levels. Cube CNP drove an M1 phenotype in RSV-infected macrophages in vitro by increasing macrophage surface expression of CD80 and CD86 with a concomitant increase in TNFα and IL-12p70, while simultaneously decreasing M2 CD206 expression. Intranasal administration of sphere and cube-CNP were well-tolerated with no observed toxicity in BALB/c mice. Notably, cube CNP preferentially accumulated in murine alveolar macrophages and induced their activation, avoiding enhanced uptake and activation of other inflammatory cells such as neutrophils, which are associated with RSV-mediated inflammation. In conclusion, we report that sphere and cube CNP modulate macrophage polarization and innate cellular responses during RSV infection.

6.
J Ginseng Res ; 47(1): 123-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35855181

RESUMO

Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

7.
Methods Mol Biol ; 2508: 183-195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737241

RESUMO

Western blotting is an excellent technique to investigate aberrations and/or therapy-induced changes in signaling proteins in cancer. Using an in vitro system, we prepared whole cell lysates from HER2-overexpressing breast cancer cell lines, treated or not with the tyrosine kinase inhibitor, lapatinib, in the presence and absence of IFN-γ. Here we describe the protocol whereby proteins in the lysates were separated by SDS-PAGE, electrophoretically transferred to nitrocellulose membranes followed by an enzyme-linked immunoassay and chemiluminescence to reveal the relevant phosphorylated and dephosphorylated proteins. Herein, Western blot analysis confirmed lapatinib dephosphorylated HER2 and downstream signaling proteins and IFN-γ induced phosphorylation of STAT1.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Lapatinib/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-2/metabolismo
8.
J Tradit Complement Med ; 12(2): 195-205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35528476

RESUMO

Chronic insulin resistance suppresses muscle and liver response to insulin, which is partially due to impaired vesicle trafficking. We report here that a formula consisting of resveratrol, ferulic acid and epigallocatechin-3-O-gallate is more effective in ameliorating muscle and hepatic insulin resistance than the anti-diabetic drugs, metformin and AICAR. The formula enhanced glucose transporter-4 (GLUT4) translocation to the plasma membrane in the insulin-resistant muscle cells by regulating both insulin-independent (calcium and AMPK) and insulin-dependent (PI3K) signaling molecules. Particularly, it regulated the subcellular location of GLUT4 through endosomes to increase glucose uptake under insulin-resistant condition. Meanwhile, this phytochemicals combination increased glycogen synthesis and decreased glucose production in the insulin-resistant liver cells. On the other hand, this formula also showed anti-diabetic potential by the reduction of lipid content in the myotubes, hepatocytes, and adipocytes. This study demonstrated that the three phenolic compounds in the formula could work in distinct mechanisms and enhance both insulin-dependent and independent vesicles trafficking and glucose transport mechanisms to improve carbohydrate and lipid metabolism.

9.
J Ginseng Res ; 46(2): 275-282, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509825

RESUMO

Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

10.
Mater Today Bio ; 14: 100233, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280330

RESUMO

Hemostatic materials are generally applied in surgical operations for cancer, but their effects on the growth and recurrence of tumors are unclear. Herein, three commonly used naturally derived hemostatic materials, gelatin sponge, Surgicel (oxidized regenerated cellulose), and biopaper (mixture of sodium hyaluronate and carboxymethyl chitosan), were cocultured with A549 human lung adenocarcinoma cells in vitro. Furthermore, the performance of hemostatic materials and the tumorigenicity of the materials with A549 â€‹cells were observed after subcutaneous implantation into BALB/c mice. The in vitro results showed that biopaper was dissolved quickly, with the highest cell numbers at 2 and 4 days of culture. Gelatin sponges retained their structure and elicited the least cell infiltration during the 2- to 10-day culture. Surgicel partially dissolved and supported cell growth over time. The in vivo results showed that biopaper degraded rapidly and elicited an acute Th1 lymphocyte reaction at 3 days after implantation, which was decreased at 7 days after implantation. The gelatin sponge resisted degradation and evoked a hybrid M1/M2 macrophage reaction at 7-21 days after implantation, and a protumor M2d subset was confirmed. Surgicel resisted early degradation and caused obvious antitumor M2a macrophage reactions. Mice subjected to subcutaneous implantation of A549 â€‹cells and hemostatic materials in the gelatin sponge group had the largest tumor volumes and the shortest overall survival (OS), while the Surgicel and the biopaper group had the smallest volumes and the longest OS. Therefore, although gelatin sponges exhibited cytotoxicity to A549 â€‹cells in vitro, they promoted the growth of A549 â€‹cells in vivo, which was related to chronic M2d macrophage reaction. Surgicel and biopaper inhibited A549 â€‹cell growth in vivo, which is associated with chronic M2a macrophage reaction or acute Th1 lymphocyte reaction.

11.
Gynecol Minim Invasive Ther ; 10(4): 226-234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909380

RESUMO

OBJECTIVES: Ovulation is such a critical physiological process that its noninvasive detection based on salivary constituents has several advantages in humans. Hence, the present study is proposed to identify the ovulatory-specific proteins in saliva in order to detect ovulation phase. MATERIALS AND METHODS: Samples were collected from women volunteers. The procedure adopted was approved by the Institutional Human Ethical Committee (DM/2014/101/38), Bharathidasan University. The saliva samples were collected from thirty healthy female volunteers, with a prior written consent. One-way analysis of variance was used to calculate protein concentration and band intensity using SPSS 16 software (SPSS Inc., Cary, NC, USA). The salivary protein expression pattern during different phases of menstrual cycle was analyzed using gel-based high resolution-liquid chromatography-mass spectrometry/mass spectrometry and matrix-assisted laser desorption ionization-time of flight/time of flight. Further, bioinformatics tools were adopted to annotate the proteins identified at various phases of menstrual cycle. RESULTS: As many as 530 proteins showed up in the saliva during ovulatory phase, whereas there were only 251 proteins identified during postovulatory phase. The functional annotation of salivary proteins revealed that the proteins got assigned to the class of "extracellular proteins" which are concerned with regulatory functions. The 16 unique and/or differentially expressed protein spots appeared during ovulatory phase, among which Cystatin-S, Prolactin-inducible protein, Cystatin-A, Cystatin-SN, BPI fold-containing family A member 2, Alpha-tubulin N-acetyltransferase 1, Carbonic anhydrase-6, Protein LEG1 homolog, Hemoglobin subunit beta, and Pancreatic alpha-amylase were identified. CONCLUSION: Total salivary proteome profile has been listed with respect to various phases of menstrual cycle. Among the protein listed, Cystatin-S offers a biomarker protein and/or indicator of ovulatory phase. However, extensive validation is required before arriving to a candidate bio-marker protein.

12.
Shokuhin Eiseigaku Zasshi ; 62(6): 193-202, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34955470

RESUMO

We examined the effects of cooking and processing on the quantitation of soy protein in various soy-based foods. For the phosphate-buffered saline (PBS) extraction, the total protein content was measured by bicinchoninic acid assay, and the buffer extraction containing sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (ME) was measured by the 2-D Quant Kit, and SDS-polyacrylamide gel electrophoresis analysis (SDS-PAGE) of each extraction was performed. Furthermore, measurements were performed by various ELISAs. During the tofu cooking process, the protein concentrations of soaked soybeans and Seigo (soybean homogenized with water) fluctuated- the change in protein solubility due to the amount of water during sample homogenization was considered to be a factor. It was thought that the decrease in protein concentration due to heating of Seigo during soymilk production was considered to indicate thermal denaturation of the protein, and that SDS and ME extraction in tofu may affect the measurement system. In cooking excluding roasted beans, proteins with a mass of 50 kDa or above and around 20 kDa were denatured, and in twice-fried tofu, proteins around 40 kDa were denatured, but the protein concentration excluding boiled soybeans did not decreased. Furthermore, the protein concentration from roasted beans, yuba, roasted okara and fried tofu increased with the cooking time, suggesting that the denaturation temperature of the protein shifted to a high temperature as the water content decreased. Both of the two types of ELISAs that comply with the official labeling system of foods containing allergenic substances were useful for detecting soybean protein by detecting proteins and peptides in processed soybean products, fermented foods excluding natto, and health foods.


Assuntos
Alimentos de Soja , Proteínas de Soja , Alérgenos/análise , Culinária , Alimentos de Soja/análise , Proteínas de Soja/análise , Glycine max
13.
Synth Syst Biotechnol ; 6(3): 216-223, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34504963

RESUMO

Gardenia blue is a natural blue pigment that is environmentally friendly, non-toxic, and stable. The hydrolysis of geniposide, catalyzed by ß-glucosidase, is a critical step in the production process of gardenia blue. However, ß-glucosidase is not resistant to high temperatures, limiting the production of gardenia blue. In this study, we investigated the effectiveness of a heat-resistant glucosidase obtained from Thermotoga maritima in the production of gardenia blue. The enzyme exhibited a maximum activity of 10.60 U/mL at 90 °C. Single-factor and orthogonal analyses showed that exogenously expressed heat-resistant glucosidase reacted with 470.3 µg/mL geniposide and 13.5 µg/mL glycine at 94.2 °C, producing a maximum yield of 26.2857 µg/mL of gardenia blue after 156.6 min. When applied to the dyeing of denim, gardenia blue produced by this method yielded excellent results; the best color-fastness was achieved when an iron ion mordant was used. This study revealed the feasibility and application potential of microbial production of gardenia blue.

14.
Acta Pharm Sin B ; 11(7): 1885-1902, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386326

RESUMO

Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1) is significantly hindering effective cancer chemotherapy. However, currently, no ABCB1-inhibitory drugs have been approved to treat MDR cancer clinically, mainly due to the inhibitor specificity, toxicity, and drug interactions. Here, we reported that three polyoxypregnanes (POPs) as the most abundant constituents of Marsdenia tenacissima (M. tenacissima) were novel ABCB1-modulatory pro-drugs, which underwent intestinal microbiota-mediated biotransformation in vivo to generate active metabolites. The metabolites at non-toxic concentrations restored chemosensitivity in ABCB1-overexpressing cancer cells via inhibiting ABCB1 efflux activity without changing ABCB1 protein expression, which were further identified as specific non-competitive inhibitors of ABCB1 showing multiple binding sites within ABCB1 drug cavity. These POPs did not exhibit ABCB1/drug metabolizing enzymes interplay, and their repeated administration generated predictable pharmacokinetic interaction with paclitaxel without obvious toxicity in vivo. We further showed that these POPs enhanced the accumulation of paclitaxel in tumors and overcame ABCB1-mediated chemoresistance. The results suggested that these POPs had the potential to be developed as safe, potent, and specific pro-drugs to reverse ABCB1-mediated MDR. Our work also provided scientific evidence for the use of M. tenacissima in combinational chemotherapy.

15.
J Supercrit Fluids ; 173: 105204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34219919

RESUMO

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients. In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability. Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease. Through a risk analysis and a Design of Experiments (DoE), we obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

16.
Biochem Biophys Rep ; 27: 101078, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34286113

RESUMO

The common marmoset Callithrix jacchus encodes two glutathione transferase (GST) enzymes with ketosteroid double-bond isomerase activity. The most active enzyme is CjaGST A3-3 showing a specific activity with 5-androsten-3,17-dione (Δ5-AD) of 62.1 ± 1.8 µmol min-1 mg-1, and a kcat value of 261 ± 49 s-1. The second ketosteroid isomerase CjaGST A1-1 has a 30-fold lower specific activity with Δ5-AD and a 37-fold lower kcat value. Thus, the marmoset CjaGST A3-3 would be the main contributor to the biosynthesis of the steroid hormones testosterone and progesterone, like the human ortholog HsaGST A3-3. Two residues differ in the H-site of the 91.4% sequence identical CjaGST A1-1 and CjaGST A3-3, and modeling of the structures suggests that the bulky phenyl ring of Phe111 in CjaGST A1-1 causes steric hindrance in the binding of the steroid substrate. Tributyltin acetate (IC50=0.16 ± 0.004 µM) and ethacrynic acid (IC50=3.3 ± 0.2 µM) were found to be potent inhibitors of CjaGST A3-3, as previously demonstrated with the human and equine orthologs.

17.
J Struct Biol X ; 5: 100048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195602

RESUMO

The termite Reticulitermes flavipes causes extensive damage due to the high efficiency and broad specificity of the ligno- and hemicellulolytic enzyme systems produced by its symbionts. Thus, the R. flavipes gut microbiome is expected to constitute an excellent source of enzymes that can be used for the degradation and valorization of plant biomass. The symbiont Opitutaceae bacterium strain TAV5 belongs to the phylum Verrucomicrobia and thrives in the hindgut of R. flavipes. The sequence of the gene with the locus tag opit5_10225 in the Opitutaceae bacterium strain TAV5 genome has been classified as a member of glycoside hydrolase family 5 (GH5), and provisionally annotated as an endo-ß-mannanase. We characterized biochemically and structurally the opit5_10225 gene product, and show that the enzyme, Op5Man5, is an exo-ß-1,4-mannosidase [EC 3.2.1.25] that is highly specific for ß-1,4-mannosidic bonds in mannooligosaccharides and ivory nut mannan. The structure of Op5Man5 was phased using electron cryo-microscopy and further determined and refined at 2.2 Šresolution using X-ray crystallography. Op5Man5 features a 200-kDa large homotrimer composed of three modular monomers. Despite insignificant sequence similarity, the structure of the monomer, and homotrimeric assembly are similar to that of the GH42-family ß-galactosidases and the GH164-family exo-ß-1,4-mannosidase Bs164 from Bacteroides salyersiae. To the best of our knowledge Op5Man5 is the first structure of a glycoside hydrolase from a bacterial symbiont isolated from the R. flavipes digestive tract, as well as the first example of a GH5 glycoside hydrolase with a GH42 ß-galactosidase-type homotrimeric structure.

18.
Biochem Biophys Rep ; 27: 101041, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34189278

RESUMO

Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCßI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCß. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCß. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis.

19.
J Adv Pharm Technol Res ; 12(2): 180-184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159151

RESUMO

In this study, the Mycobacterium tuberculosis protein 64 (MPT64) protein was constructed without any tags to facilitate the purification using column affinity chromatography, but the MPT64 must be obtained as a pure protein. This study was purpose to ensure the efficient extracting method to purify protein MPT64 directly from the polyacrylamide gel. The crude extract of extracellular protein containing MPT64 protein was separated into single protein band and the targeted protein which is located in the size of 24 kDa was excised. Each of the six bands was collected in a sterile microtube to be eluted using electroelution and the optimized of the passive-elution method. Both the elution methods demonstrated the purity level of the MPT64 protein by detecting a solely band on the gel at the 24 kDa. Among the variety of passive-elution time, the highest MPT64 protein concentration was 0.549 mg/ml after elution for 72 h. However, the electroelution result provided higher MPT64 protein concentration, i.e., 0.683 mg/mL. However, based on the recognition of the purified MPT64 protein on commercial detection kit of MPT64 protein, it showed that the positive result was only showed by the passive-elution extracting protein. Therefore, for purifying the protein MPT64 from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, the efficient method was passive elution.

20.
Mater Today Bio ; 11: 100114, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34169268

RESUMO

Materials made of recombinant spider silk proteins are promising candidates for cardiac tissue engineering, and their suitability has so far been investigated utilizing primary rat cardiomyocytes. Herein, we expanded the tool box of available spider silk variants and demonstrated for the first time that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes attach, contract, and respond to pharmacological treatment using phenylephrine and verapamil on explicit spider silk films. The hiPSC-cardiomyocytes contracted for at least 14 days on films made of positively charged engineered Araneus diadematus fibroin 4 (eADF4(κ16)) and three different arginyl-glycyl-aspartic acid (RGD)-tagged spider silk variants (positively or negatively charged and uncharged). Notably, hiPSC-cardiomyocytes exhibited different morphologies depending on the spider silk variant used, with less spreading and being smaller on films made of eADF4(κ16) than on RGD-tagged spider silk films. These results indicate that spider silk engineering is a powerful tool to provide new materials suitable for hiPSC-based cardiac tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...