Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Hepatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960374

RESUMO

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

2.
J Hepatol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901675

RESUMO

BACKGROUND & AIMS: Sodium taurocholate cotransporting peptide (NTCP) genetic polymorphisms have been described, but their role in untreated and treated patients with Chronic Hepatitis Delta (CHD) remains unknown. Virological response (VR) to NTCP inhibitor Bulevirtide (BLV) was achieved at week 48 by >70% of CHD patients, but nearly 15% experienced virological nonresponse (VNR) or partial response (PR). This study aimed to evaluate whether NTCP genetic polymorphisms affect baseline HDV RNA load and response to BLV in CHD patients. METHODS: Untreated and BLV treated patients were enrolled in a retrospective cross-sectional and longitudinal study. Clinical and virological characteristics were collected at baseline and up to 96 weeks in the BLV-treated patients. NTCP genetic polymorphisms were identified by Sanger sequencing. RESULTS: Of the 6 NTCP polymorphisms studied in 209 CHD untreated patients, carriers of rs17556915 TT/CC (N=142) compared to CT (N=67) genotype presented higher median HDV RNA levels (5.39 vs. 4.75 log10 IU/mL, p=0.004). 76 out of 209 patients receiving BLV monotherapy at 2 mg/day were evaluated at week 24 and 40 of them up to week 96. Higher mean baseline HDV RNA levels were confirmed in TT/CC (N=43) compared to CT (N=33) carriers (5.38 vs. 4.72 log10 IU/mL, p=0.010). Although 24-week VR was comparable between TT/CC and CT carriers (25/43 vs. 17/33, p=0.565), the former group presented VNR more often than PR (9/11 vs. 9/23, p=0.02) at week 24. 7/9 TT/CC genotype carriers remained VNR at week 48 of BLV treatment. CONCLUSIONS: The NTCP rs17556915 C>T genetic polymorphisms may influence baseline HDV RNA load both in untreated and BLV treated patients with CHD and may contribute to identify patients with different early virological responses to BLV.

3.
Drug Deliv ; 29(1): 2995-3008, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36104946

RESUMO

To increase the antitumor drug concentration in the liver tumor site and improve the therapeutic effects, a functionalized liposome (PPP-LIP) with tumor targetability and enhanced internalization after matrix metalloproteinase-2 (MMP2)-triggered cell-penetrating peptide (TATp) exposure was modified with myrcludex B (a synthetic HBV preS-derived lipopeptide endowed with compelling liver tropism) for liver tumor-specific delivery. After intravenous administration, PPP-LIP was mediated by myrcludex B to reach the hepatocyte surface. The MMP2-overexpressing tumor microenvironment deprotected PEG, exposing it to TATp, facilitating tumor penetration and subsequent efficient destruction of tumor cells. In live imaging of small animals and cellular uptake, PPP-LIP was taken up much more than typical unmodified liposomes in the ICR mouse liver and liver tumor cells. Hydroxycamptothecin (HCPT)-loaded PPP-LIP showed a better antitumor effect than commercially available HCPT injections among MTT, three-dimensional (3 D) tumor ball, and tumor-bearing nude mouse experiments. Our findings indicated that PPP-LIP nanocarriers could be a promising tumor-targeted medication delivery strategy for treating liver cancers with elevated MMP2 expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Hepatócitos , Lipossomos , Neoplasias Hepáticas/tratamento farmacológico , Metaloproteinase 2 da Matriz , Camundongos , Camundongos Endogâmicos ICR , Microambiente Tumoral
4.
Virol Sin ; 37(4): 558-568, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35568375

RESUMO

Hepatitis B virus (HBV) is a primary cause of chronic liver diseases in humans. HBV infection exhibits strict host and tissue tropism. HBV core promoter (Cp) drives transcription of pregenomic RNA (pgRNA) and plays a key role in the viral life cycle. Hepatocyte nuclear factor 4α (HNF4α) acts as a major transcriptional factor that stimulates Cp. In this work, we reported that BEL7404 â€‹cell line displayed a high efficiency of DNA transfection and high levels of HBV antigen expression after transfection of HBV replicons without prominent viral replication. The introduction of exogenous HNF4α and human sodium taurocholate cotransporting polypeptide (hNTCP) expression into BEL7404 made it permissive for HBV replication and susceptible to HBV infection. BEL7404-derived cell lines with induced HBV permissiveness and susceptibility were constructed by stable co-transfection of hNTCP and Tet-inducible HNF4α followed by limiting dilution cloning. HBV replication in such cells was sensitive to inhibition by nucleotide analog tenofovir, while the infection was inhibited by HBV entry inhibitors. This cell culture system provides a new and additional tool for the study of HBV replication and infection as well as the characterization of antiviral agents.


Assuntos
Vírus da Hepatite B , Hepatite B , Antivirais/uso terapêutico , Técnicas de Cultura de Células , Vírus da Hepatite B/fisiologia , Hepatócitos , Humanos , Replicação Viral
5.
J Infect Dev Ctries ; 16(1): 179-186, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35192536

RESUMO

INTRODUCTION: Sodium taurocholate cotransporting polypeptide has been identified as the hepatitis B virus (HBV) entry receptor. However, information regarding the role of sodium taurocholate cotransporting polypeptide variants in the development of HBV-related advanced cirrhosis and hepatocellular carcinoma is limited. METHODOLOGY: Overall, 581 patients with chronic HBV infection were divided into the liver fibrosis or cirrhosis group based on the Fibrosis-4 index. Further, 183 patients with hepatocellular carcinoma were distributed into early/intermediate and advanced/end stage groups based on Barcelona Clinic Liver Cancer Staging approach. Three single nucleotide polymorphisms were genotyped by high resolution melting curve method. Serum biomarkers of liver function were detected, and hepatocellular carcinoma properties were collected as well. RESULTS: Subjects with GA+AA genotypes at the rs4646287 polymorphism site were associated with a significantly higher rate of fibrosis development (rs4646287 GA+AA genotypes were 13.7% and 20.0% in the non-fibrosis and fibrosis group, respectively; p = 0.038). There were no significant differences between sodium taurocholate cotransporting polypeptide polymorphisms and hepatocellular carcinoma progression. The GA+AA genotype carriers of rs7154439 had relatively high albumin levels (p = 0.035). The rs2296651 GA genotype carriers tended to have solitary tumor nodule and without metastasis (p = 0.004 and 0.015, respectively). CONCLUSIONS: Rs4646287 was associated with HBV-related fibrosis development. Sodium taurocholate cotransporting polypeptide polymorphisms were correlated with serum albumin level as well as hepatocellular carcinoma multifocality and metastasis. Therefore, integrating sodium taurocholate cotransporting polypeptide polymorphisms to a risk stratification algorithm may help clinicians manage the chronic HBV infection patients better.


Assuntos
Hepatite B Crônica , Hepatite B , Hepatite B/complicações , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio , Polimorfismo de Nucleotídeo Único , Simportadores
6.
Viruses ; 14(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35062309

RESUMO

(1) Background: The myristoylated pre-S1 peptide (Myr47) synthesized to mimic pre-S1 domain (2-48) in large (L) surface protein of hepatitis B virus (HBV) prevents HBV infection to hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP). We previously demonstrated that yeast-derived nanoparticles containing L protein (bio-nanocapsules: BNCs) bind scavenger receptor class B type 1 (SR-B1). In this study, we examined the binding of Mry47 to SR-B1. (2) Methods: The binding and endocytosis of fluorescence-labeled Myr47 to SR-B1 (and its mutants)-green fluorescence protein (GFP) fusion proteins expressed in HEK293T cells were analyzed using flow cytometry and laser scanning microscopy (LSM). Various ligand-binding properties were compared between SR-B1-GFP and NTCP-GFP. Furthermore, the binding of biotinylated Myr47 to SR-B1-GFP expressed on HEK293T cells was analyzed via pull-down assays using a crosslinker and streptavidin-conjugated beads. (3) Conclusions: SR-B1 bound not only Myr47 but also its myristoylated analog and BNCs, but failed to bind a peptide without myristoylation. However, NTCP only bound Myr47 among the ligands tested. Studies using SR-B1 mutants suggested that both BNCs and Myr47 bind to similar sites of SR-B1. Crosslinking studies indicated that Myr47 binds preferentially SR-B1 multimer than monomer in both HEK293T and HepG2 cells.


Assuntos
Antígenos de Superfície da Hepatite B/química , Vírus da Hepatite B/metabolismo , Lipopeptídeos/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Precursores de Proteínas/química , Receptores Virais/metabolismo , Receptores Depuradores Classe B/metabolismo , Simportadores/metabolismo , Endocitose , Células HEK293 , Humanos , Ligantes , Proteínas Mutantes/metabolismo , Ácido Mirístico/metabolismo , Nanocápsulas , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo , Receptores Depuradores Classe B/genética
7.
J Clin Exp Hepatol ; 12(1): 155-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068796

RESUMO

Chronic liver disease (CLD) is one of the leading causes of disability-adjusted life years in many countries. A recent understanding of nuclear bile acid receptor pathways has increased focus on the impact of crosstalk between the gut, bile acids, and liver on liver pathology. While conventionally used in cholestatic disorders and to dissolve gallstones, the discovery of bile acids' influence on the gut microbiome and human metabolism offers a unique potential for their utility in early and advanced liver diseases because of diverse etiologies. Based on these findings, preclinical studies using bile acid-based molecules have shown encouraging results at addressing liver inflammation and fibrosis. Emerging data also suggest that bile acid profiles change distinctively across various causes of liver disease. We summarize the current knowledge and evidence related to bile acids in health and disease and discuss culminated and ongoing therapeutic trials of bile acid derivatives in CLD. In the near future, further evidence in this area might help clinicians better detect and manage liver diseases.

8.
J Virol Methods ; 299: 114345, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728272

RESUMO

The hepatoma cell lines stably expressing sodium taurocholate cotransporting polypeptide (NTCP), the receptor of hepatitis B virus (HBV) infection, serve as important infection models for studying viral biology and drug discovery. However, the efficiency of infection greatly varies. In this study, we studied the effects and potential mechanisms of Matrigel® hESC-qualified (M-hq), a biological basement membrane matrix commonly used in cell culture, on promotion HBV in vitro infection in HepG2-NTCP cells. For the first time, our findings demonstrate that M-hq could enhance the infection efficiency of cell culture-derived HBV with no impact on the cell viability, the HBV transcription and response to antiviral treatments. The infection enhancement is reproducible and is suggested to occur at HBV attachment step. Our study suggests that this novel system is applicable for studying HBV biology and new drugs.


Assuntos
Hepatite B , Neoplasias Hepáticas , Colágeno , Combinação de Medicamentos , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos , Humanos , Laminina , Proteoglicanas , Internalização do Vírus
9.
Acta Pharmaceutica Sinica ; (12): 3576-3586, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-964331

RESUMO

Bile acids (BAs) are a major component of bile salt, which plays a vital role in the metabolism of lipids in humans. Ninety-five percent of bile acids are recycled by the enterohepatic circulation (EHC), and therefore EHC is essential for bile acid homeostasis. There are four transporters that mediate the transmembrane transport of bile acids, each of which plays an important role in the enterohepatic circulation. Gene defects in bile acid transporters can lead to disorders of the enterohepatic circulation, ultimately leading to clinical phenotypes such as metabolic diseases and even death. Bile transporter expression is altered in patients with various metabolic disease states, suggesting that disruption of bile acid transporters may be a pivotal pathological mechanism for the development of metabolism diseases. Thus, many drugs targeting bile acid transporters are being developed. We provide a concise overview of the progress of bile acid transporters research, discuss the relationship between different bile acid transporters and disease development, and summarize the current progress in drug development targeting bile acid transporters.

10.
Journal of Clinical Hepatology ; (12): 613-616, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-922963

RESUMO

Objective To investigate the clinical and gene mutation features of sodium taurocholate cotransporting polypeptide (NTCP) deficiency. Methods A total of 10 children, aged 50%). Second-generation gene sequencing showed that all 10 children had a homozygous mutation of the SLC10A1 gene, i.e., c.800C > T(p.Ser267Phe, chr14∶70245193). Conclusion Although NTCP deficiency often has no symptoms, some of the children may manifest as infant cholestasis in the early stage. The possibility of NTCP deficiency should be considered when there is persistent hypercholanemia and the changing trend of serum TBA is not consistent with that of other liver function parameters.

11.
JHEP Rep ; 3(4): 100296, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34222850

RESUMO

BACKGROUND & AIMS: Chronic hepatitis B is an incurable disease. Addressing the unmet medical need for therapies has been hampered by a lack of suitable cell culture models to investigate the HBV life cycle in a single experimental setup. We sought to develop a platform suitable to investigate all aspects of the entire HBV life cycle. METHODS: HepG2-NTCPsec+ cells were inoculated with HBV. Supernatants of infected cells were transferred to naïve cells. Inhibition of infection was determined in primary and secondary infected cells by high-content imaging of viral and cellular factors. Novel antivirals were triaged in cells infected with cell culture- or patient-derived HBV and in stably virus replicating cells. HBV internalisation and target-based receptor binding assays were conducted. RESULTS: We developed an HBV platform, screened 2,102 drugs and bioactives, and identified 3 early and 38 late novel HBV life cycle inhibitors using infectious HBV genotype D. Two early inhibitors, pranlukast (EC50 4.3 µM; 50% cytotoxic concentration [CC50] >50 µM) and cytochalasin D (EC50 0.07 µM; CC50 >50 µM), and 2 late inhibitors, fludarabine (EC50 0.1 µM; CC50 13.4 µM) and dexmedetomidine (EC50 6.2 µM; CC50 >50 µM), were further investigated. Pranlukast inhibited HBV preS1 binding, whereas cytochalasin D prevented the internalisation of HBV. Fludarabine inhibited the secretion of HBV progeny DNA, whereas dexmedetomidine interfered with the infectivity of HBV progeny. Patient-derived HBV genotype C was efficiently inhibited by fludarabine (EC50 0.08 µM) and dexmedetomidine (EC50 8.7 µM). CONCLUSIONS: The newly developed high-content assay is suitable to screen large-scale drug libraries, enables monitoring of the entire HBV life cycle, and discriminates between inhibition of early and late viral life cycle events. LAY SUMMARY: HBV infection is an incurable, chronic disease with few available treatments. Addressing this unmet medical need has been hampered by a lack of suitable cell culture models to study the entire viral life cycle in a single experimental setup. We developed an image-based approach suitable to screen large numbers of drugs, using a cell line that can be infected by HBV and produces large amounts of virus particles. By transferring viral supernatants from these infected cells to uninfected target cells, we could monitor the entire viral life cycle. We used this system to screen drug libraries and identified novel anti-HBV inhibitors that potently inhibit HBV in various phases of its life cycle. This assay will be an important new tool to study the HBV life cycle and accelerate the development of novel therapeutic strategies.

12.
Viruses ; 13(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067884

RESUMO

The Myr47 lipopeptide, consisting of hepatitis B virus (HBV) pre-S1 domain (myristoylated 2-48 peptide), is an effective commercialized anti-HBV drug that prevents the interaction of HBV with sodium taurocholate cotransporting polypeptide (NTCP) on human hepatocytes, an activity which requires both N-myristoylation residue and specific amino acid sequences. We recently reported that Myr47 reduces the cellular uptake of HBV surface antigen (HBsAg, subviral particle of HBV) in the absence of NTCP expression. In this study, we analyzed how Myr47 reduces the cellular uptake of lipid nanoparticles (including liposomes (LPs) and HBsAg) without NTCP expression. By using Myr47 mutants lacking the HBV infection inhibitory activity, they could reduce the cellular uptake of LPs in an N-myristoylation-dependent manner and an amino acid sequence-independent manner, not only in human liver-derived cells but also in human non-liver-derived cells. Moreover, Myr47 and its mutants could reduce the interaction of LPs with apolipoprotein E3 (ApoE3) in an N-myristoylation-dependent manner regardless of their amino acid sequences. From these results, lipopeptides are generally anchored by inserting their myristoyl residue into the lipid bilayer and can inhibit the interaction of LPs/HBsAg with apolipoprotein, thereby reducing the cellular uptake of LPs/HBsAg. Similarly, Myr47 would interact with HBV, inhibiting the uptake of HBV into human hepatic cells, while the inhibitory effect of Myr47 may be secondary to its ability to protect against HBV infection.


Assuntos
Endocitose/efeitos dos fármacos , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Sequência de Aminoácidos , Apolipoproteínas E/metabolismo , Transporte Biológico , Linhagem Celular , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/química , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Lipossomos , Oligopeptídeos/química , Ligação Proteica
13.
Transl Pediatr ; 10(4): 1045-1054, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012853

RESUMO

Sodium-taurocholate cotransporting polypeptide (NTCP) deficiency is a newly reported hereditary bile acid metabolic disease. Here we describe the clinical characteristics of 12 cases of pediatric NTCP deficiency, as well as review 60 previously reported cases in the literature in order to provide better guidance for pediatricians. The clinical records, laboratory and imaging data were collected of 12 cases who were treated at the pediatric infectious disease department of the West China Second University Hospital of Sichuan University, China, from December 2018 to July 2020. PubMed and Wanfang databases were searched and 11 studies including 60 pediatric NTCP deficiency patients from January 2015 to November 2020 were retrieved. In our center, there were 4 girls and 8 boys, with a median age at admission of 9.9 months (range, 2.2 to 70 months). Six patients (50%) had prolonged neonatal jaundice. All of the patients (12/12; 100%) had normal growth and development. The reason for the first visit was prolonged neonatal jaundice (4/12, 33.3%), non-liver related diseases (6/12, 50%) and routine checkup (2/12, 16.7%). Hypercholanemia was documented in 12/12 (100%), elevated aspartate aminotransferase (AST) in 6/12 (50%), and elevated alanine aminotransferase (ALT) in 1/12 (8.3%). All of the patients (12/12; 100%) had homozygous mutations of c.800C>T in SLC10A1. Sixty patients (22 girls and 38 boys) were included in the literature review; 36 (60%) had hyperbilirubinemia after 1 month. The reasons for testing for hypercholanemia were identified in 47/60 cases, and included prolonged neonatal jaundice and neonatal transient cholestasis in 26 (26/47, 55.3%); non-liver related diseases in 14 (14/47, 29.8%); routine medical examination in 3 (3/14, 6.4%); volunteer recruitment in 1 (1/14, 7.1%); dark urine in 1 (1/47, 2.1%). Hypercholanemia was confirmed in 60/60 (100%); 31 (51.7%) had elevated AST, and 10 (16.7%) had elevated ALT. Among 59 Chinese patients, 52 (88.1%) had homozygous mutations of c.800C>T in SLC10A1. The most common symptom of pediatric NTCP deficiency is jaundice. NTCP deficiency can also be detected during routine check-ups. The common biochemical features are hypercholanemia and elevated AST. Screening for c.800C>T mutation in SLC10A1 is useful for primary genetic screening in Chinese infants with persistent hypercholanemia after infectious, structural, and immunological factors are excluded.

14.
Ginekol Pol ; 92(11): 767-773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33844255

RESUMO

OBJECTIVES: This study aimed to assess the role of OST-α, OST-ß and NTCP in patients with ICP, with a view to determine patients with severe prognosis and to minimize adverse fetal outcomes. MATERIAL AND METHODS: Sixty-nine pregnant women diagnosed with ICP and 50 healthy women were included the study. Serum OST-α, OST-ß and NTCP were measured using ELISA kits. RESULTS: The median OST-α levels were 176.3 pg/mL in women with ICP and 201 pg/mL in healthy subjects (p = 0.205). The median OST-ß levels were found to be 51.17 pg/mL in patients with ICP and 40.9 pg/mL in controls (p = 0.033). Median NTCP levels were 519.7 ng/mL in the ICP group and 483.3 ng/mL in healthy women (p = 0.051). CONCLUSIONS: This is the first study to evaluate serum levels of OST-α, OST-ß and NTCP in patients with ICP. It is likely that OST-α, OST-ß and NTCP contribute to the etiopathogenesis of ICP. Serum OST-α and OST-ß levels can be used as diagnostic and monitoring markers of ICP, and the inhibition of these molecules could provide therapeutic benefit in ICP by reducing the circulation of enterohepatic bile acids.


Assuntos
Colestase Intra-Hepática , Transportadores de Ânions Orgânicos Dependentes de Sódio , Complicações na Gravidez , Ácidos e Sais Biliares/sangue , Feminino , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/sangue , Gravidez , Complicações na Gravidez/sangue , Simportadores/sangue
15.
Artigo em Inglês | MEDLINE | ID: mdl-33545502

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) is an important hepatocyte transporter, while its physiological functions require further investigation. In our study, an integrated plasma and liver GC-MS- and LC-MS-based metabolomics strategy with an optimized two-step liquid-liquid extraction was utilized to explore the physiological functions of NTCP via a knockout (KO) mouse model. The present study found that NTCP deficiency resulted in obvious metabolic change in the plasma and liver of mice. Totally, 102 and 87 differential metabolites were discovered in the liver and plasma, respectively. Pathway analysis revealed that the metabolism of tyrosine, glycine, taurine, fatty acid and glycerophospholipid as well as the biosynthesis of tryptophan, pantothenate and CoA were significantly dysregulated in the Ntcp KO mice, indicating that NTCP is closely involved in these metabolic pathways. Moreover, L-tryptophan, cadaverine and D-pantothenic acid could serve as the diagnostic biomarker for NTCP deficiency. Our study provided deep insights into the physiological functions of NTCP, and the findings would hold the great potential to be used for the discovery of new therapeutic and diagnostic strategies for NTCP deficiency clinically.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma/fisiologia , Metabolômica/métodos , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Simportadores/genética , Simportadores/metabolismo , Simportadores/fisiologia
16.
JHEP Rep ; 3(1): 100195, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385130

RESUMO

BACKGROUND & AIMS: Chronic HBV infection cannot be cured by current therapeutics owing to their limited ability to reduce covalently closed circular (ccc)DNA levels in the livers of infected individuals. Therefore, greater understanding of the molecular determinants of cccDNA formation and persistence is required. One key issue is the extent to which de novo nucleocapsid-mediated replenishment (reimport) contributes to cccDNA levels in an infected hepatocyte. METHODS: We engineered an infectious HBV mutant with a genome encoding a stop codon at position T67 in the HBV core open reading frame (ΔHBc HBV). Importantly, ΔHBc HBV virions cannot initiate nucleocapsid synthesis upon infection. Long-term in vitro HBV infection markers were followed for up for 9 weeks in HepG2-NTCP cells (A3 clone) and HBV DNA was quantified using a newly-developed, highly-precise PCR assay (cccDNA inversion quantitative PCR). RESULTS: ΔHBc and wild-type (WT) HBV resulted in comparable expression of HBV surface antigen (HBsAg), which could be blocked using the entry inhibitor Myrcludex B, confirming bona fide infection via the receptor sodium taurocholate cotransporting polypeptide (NTCP). In primary human hepatocytes, Huh7-NTCP, HepG2-NTCP, and HepaRG-NTCP cells, comparable copy numbers of cccDNA were formed. cccDNA levels, transcription of viral RNA, and HBsAg secretion remained comparably stable in WT and ΔHBc HBV-infected cells for at least 9 weeks. CONCLUSIONS: Our results imply that de novo synthesised HBc plays a minor role in transcriptional regulation of cccDNA. Importantly, we show that initially-formed cccDNA is stable in hepatocytes without requiring continuous replenishment in in vitro infection systems and contribution from de novo DNA-containing nucleocapsids is not required. Thus, short-term therapeutic targeting of capsid-reimport is likely an inefficient strategy in eliminating cccDNA in chronically infected hepatocytes. LAY SUMMARY: The hepatitis B virus can maintain itself in the liver for a patient's lifetime, causing liver injury and cancer. We have clarified exactly how it maintains itself in an infected cell. This now means we have a better idea at how to target the virus and cure a chronic infection.

17.
Acta Pharm Sin B ; 11(12): 3847-3856, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024311

RESUMO

Bile acids (BAs) are amphipathic molecules important for metabolism of cholesterol, absorption of lipids and lipid soluble vitamins, bile flow, and regulation of gut microbiome. There are over 30 different BA species known to exist in humans and mice, which are endogenous modulators of at least 6 different membrane or nuclear receptors. This diversity of ligands and receptors play important roles in health and disease; however, the full functions of each individual BA in vivo remain unclear. We generated a mouse model lacking the initiating enzymes, CYP7A1 and CYP27A1, in the two main pathways of BA synthesis. Because females are more susceptible to BA related diseases, such as intrahepatic cholestasis of pregnancy, we expanded this model into female mice. The null mice of Cyp7a1 and Cyp27a1 were crossbred to create double knockout (DKO) mice. BA concentrations in female DKO mice had reductions in serum (63%), liver (83%), gallbladder (94%), and small intestine (85%), as compared to WT mice. Despite low BA levels, DKO mice had a similar expression pattern to that of WT mice for genes involved in BA regulation, synthesis, conjugation, and transport. Additionally, through treatment with a synthetic FXR agonist, GW4064, female DKO mice responded to FXR activation similarly to WT mice.

18.
Cells ; 9(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911838

RESUMO

Hepatitis B is the most prevalent viral hepatitis worldwide, affecting approximately one-third of the world's population. Among HBV factors, the surface protein is the most sensitive biomarker for viral infection, given that it is expressed at high levels in all viral infection phases. The large HBV surface protein (LHBs) contains the integral pre-S1 domain, which binds to the HBV receptor sodium taurocholate co transporting polypeptide on the hepatocyte to facilitate viral entry. The accumulation of viral LHBs and its prevalent pre-S mutants in chronic HBV carriers triggers a sustained endoplasmic reticulum (ER) overload response, leading to ER stress-mediated cell proliferation, metabolic switching and genomic instability, which are associated with pro-oncogenic effects. Ground glass hepatocytes identified in HBV-related hepatocellular carcinoma (HCC) patients harbor pre-S deletion variants that largely accumulate in the ER lumen due to mutation-induced protein misfolding and are associated with increased risks of cancer recurrence and metastasis. Moreover, in contrast to the major HBs, which is decreased in tumors to a greater extent than it is in peritumorous regions, LHBs is continuously expressed during tumorigenesis, indicating that LHBs serves as a promising biomarker for HCC in people with CHB. Continuing efforts to delineate the molecular mechanisms by which LHBs regulates pathological changes in CHB patients are important for establishing a correlation between LHBs biomarkers and HCC development.


Assuntos
Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas/virologia , Carcinoma Hepatocelular/patologia , Estresse do Retículo Endoplasmático , Vírus da Hepatite B/metabolismo , Humanos , Neoplasias Hepáticas/patologia
19.
Biochem Biophys Rep ; 22: 100763, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32322693

RESUMO

Current antiviral therapy can not cure chronic hepatitis B virus (HBV) infection or eliminate the risk of hepatocellular carcinoma. The licensed epidermal growth factor receptor (EGFR) inhibitors have found to inhibit hepatitis C virus replication via downregulation of signal transducers and activators of transcription 3 (STAT3) phosphorylation. Since STAT3 is also involved in HBV replication, we further studied the anti-HBV efficacy of the EGFR inhibitors in this study. HBV-transfected HepG2.2.15 cells and HBV-infected HepG2-NTCP cells were used as cell models, and HBV replication, the syntheses of viral antigens and the magnitude of the covalently closed circular DNA (cccDNA) reservoir were used as indictors to test the anti-HBV effects of EGFR inhibitors erlotinib and gefitinib. Erlotinib inhibited HBV replication with a half-maximal inhibitory concentration of 1.05 µM. It also reduced the syntheses of viral antigens at concentrations of 2.5 µM or higher. The underlying mechanism was possibly correlated with its inhibition on STAT3 phosphorylation via up-regulation of suppressor of cytokine signaling 3. Gefitinib also inhibited HBV replication and antigen syntheses. Compared with the commonest antiviral drug entecavir, these EGFR inhibitors additionally reduced hepatitis B e antigen and erlotinib also marginally affected the cccDNA reservoir in HBV-infected HepG2-NTCP cells. Interestingly, these promising anti-HBV effects were significantly enhanced by extension of treatment duration. In conclusion, EGFR inhibitors demonstrated a comprehensive anti-HBV potential, highlighting a new strategy to cure HBV infection and suggesting animal model-related studies or clinical try in the future.

20.
Cell Microbiol ; 22(8): e13205, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32216005

RESUMO

Hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with 250 million individuals chronically infected. Many stages of the HBV infectious cycle have been elucidated, but the mechanisms of HBV entry remain poorly understood. The identification of the sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor and the establishment of NTCP-overexpressing hepatoma cell lines susceptible to HBV infection opens up new possibilities for investigating these mechanisms. We used HepG2-NTCP cells, and various chemical inhibitors and RNA interference (RNAi) approaches to investigate the host cell factors involved in HBV entry. We found that HBV uptake into these cells was dependent on the actin cytoskeleton and did not involve macropinocytosis or caveolae-mediated endocytosis. Instead, entry occurred via the clathrin-mediated endocytosis pathway. HBV internalisation was inhibited by pitstop-2 treatment and RNA-mediated silencing (siRNA) of the clathrin heavy chain, adaptor protein AP-2 and dynamin-2. We were able to visualise HBV entry in clathrin-coated pits and vesicles by electron microscopy (EM) and cryo-EM with immunogold labelling. These data demonstrating that HBV uses a clathrin-mediated endocytosis pathway to enter HepG2-NTCP cells increase our understanding of the complete HBV life cycle.


Assuntos
Clatrina/metabolismo , Endocitose , Vírus da Hepatite B/fisiologia , Internalização do Vírus , Clatrina/ultraestrutura , Microscopia Crioeletrônica , Células Hep G2 , Vírus da Hepatite B/ultraestrutura , Interações entre Hospedeiro e Microrganismos , Humanos , Microscopia Eletrônica , Interferência de RNA , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...