Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Environ Manage ; 364: 121379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870787

RESUMO

Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.


Assuntos
Biodiversidade , Fertilizantes , Solo , Tibet , Solo/química , Ecossistema , Fósforo/análise , Microbiologia do Solo , Biomassa , Nitrogênio , Agricultura
2.
Biodivers Data J ; 12: e125162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841135

RESUMO

The fauna of Diplura, the two-pronged bristletails (Hexapoda), of the southern Appalachians has received little focused systematic attention. Existing literature suggests the fauna to comprise around a dozen species. Based on a broader DNA barcode-based survey of high elevation litter arthropods in the region, we suggest the fauna to be much richer, with automated species delimitation methods hypothesising as many as 35 species, most highly restricted to single or closely proximate localities. Such a result should not be very surprising for such small, flightless arthropods, although it remains to be seen if other markers or morphology support such high diversity. The region still remains sparsely sampled for these more cryptic elements of the arthropod fauna and much larger numbers of species undoubtedly remain to be discovered.

3.
One Health ; 18: 100720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699438

RESUMO

Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.

4.
Glob Chang Biol ; 30(3): e17234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469998

RESUMO

Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.


Assuntos
Ecossistema , Micorrizas , Cadeia Alimentar , Árvores , Solo/química , Biodiversidade , Plantas , Carbono
5.
Microbiol Res ; 282: 127651, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430888

RESUMO

Climate change and anthropogenic disturbances are known to influence soil biodiversity. The objectives of this study were to compare the community composition, species coexistence patterns, and ecological assembly processes of soil microbial communities in a paired setting featuring a natural and an anthropogenic ecosystem facing each other at identical climatic, pedological, and vegetational conditions. A transect gradient from forest to seashore allowed for sampling across different habitats within both sites. The field survey was carried out at two adjacent strips of land within the Po River delta lagoon system (Veneto, Italy) one of which is protected within a natural preserve and the other has been converted for decades into a tourist resort. The anthropogenic pressure interestingly led to an increase in the α-diversity of soil microbes but was accompanied by a reduction in ß-diversity. The community assembly mechanisms of microbial communities differentiate in natural and anthropic ecosystems: for bacteria, in natural ecosystems deterministic variables and homogeneous selection play a main role (51.92%), while stochastic dispersal limitation (52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We are on calcareous sandy soils and in more natural ecosystems a variation of topsoil pH favors the deterministic selection of bacterial communities, while a divergence of K availability favors stochastic selection. In more anthropized ecosystems, the deterministic variable selection is influenced by the values of SOC. Microbial networks in the natural system exhibited higher numbers of nodes and network edges, as well as higher averages of path length, weighted degree, clustering coefficient, and density than its equivalent sites in the more anthropically impacted environment. The latter on the other hand presented a stronger modularity. Although the influence of stochastic processes increases in anthropized habitats, niche-based selection also proves to impose constraints on communities. Overall, the functionality of the relationships between groups of microorganisms co-existing in communities appeared more relevant to the concept of functional biodiversity in comparison to the plain number of their different taxa. Fewer but functionally more organized lineages displayed traits underscoring a better use of the resources than higher absolute numbers of taxa when those are not equally interconnected in their habitat exploitation. However, considering that network complexity can have important implications for microbial stability and ecosystem multifunctionality, the extinction of complex ecological interactions in anthropogenic habitats may impair important ecosystem services that soils provide us.


Assuntos
Ecossistema , Microbiota , Microbiologia do Solo , Biodiversidade , Florestas , Solo/química , Bactérias/genética
6.
Environ Int ; 185: 108511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382404

RESUMO

Fungal plant pathogens threaten crop production and sustainable agricultural development. However, the environmental factors driving their diversity and nationwide biogeographic model remain elusive, impacting our capacity to predict their changes under future climate scenarios. Here, we analyzed potential fungal plant pathogens from 563 samples collected from 57 agricultural fields across China. Over 28.0% of fungal taxa in the phyllosphere were identified as potential plant pathogens, compared to 22.3% in the rhizosphere. Dominant fungal plant pathogen groups were Cladosporium (in the phyllosphere) and Fusarium (in the rhizosphere), with higher diversity observed in the phyllosphere than in rhizosphere soil. Deterministic processes played an important role in shaping the potential fungal plant pathogen community assembly in both habitats. Mean annual precipitation and temperature were the most important factor influencing phyllosphere fungal plant pathogen richness. Significantly negative relationships were found between fungal pathogen diversity and sorghum yield. Notably, compared to the rhizosphere, the phyllosphere fungal plant pathogen diversity played a more crucial role in sorghum yield. Together, our work provides novel insights into the factors governing the spatial patterns of fungal plant pathogens in the crop microbiome, and highlights the potential significance of aboveground phyllosphere fungal plant pathogens in crop productivity.


Assuntos
Microbiota , Sorghum , Microbiologia do Solo , Agricultura , Solo , Grão Comestível
7.
mSystems ; 9(3): e0133123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376262

RESUMO

The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Dióxido de Carbono/farmacologia , Microbiologia do Solo , Plantas/microbiologia , Ambientes Extremos
8.
Sci Total Environ ; 917: 170464, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290671

RESUMO

The aboveground plant communities are crucial in driving ecosystem functioning, particularly being the primary producers in terrestrial ecosystems. Numerous studies have investigated the impacts of aboveground plant communities on multiple ecosystem functions at α-scale. However, such critical effects have been unexplored at ß-scale and the comparative assessment of the effects and underlying mechanisms of aboveground plant communities on α- and ß-multifunctionality has been lacking. In this study, we examined the effects of aboveground plant communities on soil multifunctionality both at α- and ß-scale in the alpine meadow of the Tibetan Plateau. Additionally, we quantified the direct effects of aboveground plant communities, as well as the indirect effects mediated by changes in biotic and abiotic factors, on soil multifunctionality at both scales. Our findings revealed that: 1) Aboveground plant communities had significantly positive effects on α-multifunctionality whereas, ß-multifunctionality was not affected significantly. 2) Aboveground plant communities directly influence α- and ß-multifunctionality in contrasting ways, with positive and negative effects, respectively. Apart from the direct effects of plant community, we found that soil water content and bacterial ß-diversity serving as the primary predictors for the responses of α- and ß-multifunctionality to the presence of aboveground plant communities, respectively. And ß-soil biodiversity appeared to be a stronger predictor of multifunctionality relative to α-soil biodiversity. Our findings provide novel insights into the drivers of ecosystem multifunctionality at different scales, highlight the importance of maintaining biodiversity at multiple scales and offer valuable knowledge for the maintenance of ecosystem functioning and the restoration of alpine meadow ecosystems.


Assuntos
Biodiversidade , Ecossistema , Tibet , Plantas , Solo , Pradaria
9.
Ann Bot ; 133(3): 399-412, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38085925

RESUMO

BACKGROUND: The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE: Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS: Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.


Assuntos
Microbiota , Micorrizas , Humanos , Ecossistema , Raízes de Plantas , Micorrizas/fisiologia , Simbiose , Solo , Microbiologia do Solo , Fungos
10.
Sci China Life Sci ; 67(3): 596-610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38057623

RESUMO

Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especially after decades of fertilization. Here, we assess the contribution of the soil functionalities of carbon (C), nitrogen (N), and phosphorus (P) cycling to crop production and explore how soil organisms control these functionalities in a 33-year field fertilization experiment. The long-term application of green manure or cow manure produced wheat yields equivalent to those obtained with chemical N, with the former providing higher soil functions and allowing the functionality of N cycling (especially soil N mineralization and biological N fixation) to control wheat production. The keystone phylotypes within the global network rather than the overall microbial community dominated the soil multifunctionality and functionality of C, N, and P cycling across the soil profile (0-100 cm). We further confirmed that these keystone phylotypes consisted of many metabolic pathways of nutrient cycling and essential microbes involved in organic C mineralization, N2O release, and biological N fixation. The chemical N, green manure, and cow manure resulted in the highest abundances of amoB, nifH, and GH48 genes and Nitrosomonadaceae, Azospirillaceae, and Sphingomonadaceae within the keystone phylotypes, and these microbes were significantly and positively correlated with N2O release, N fixation, and organic C mineralization, respectively. Moreover, our results demonstrated that organic fertilization increased the effects of the network size and keystone phylotypes on the subsoil functions by facilitating the migration of soil microorganisms across the soil profiles and green manure with the highest migration rates. This study highlights the importance of the functionality of N cycling in controlling crop production and keystone phylotypes in regulating soil functions, and provides selectable fertilization strategies for maintaining crop production and soil functions across soil profiles in agricultural ecosystems.


Assuntos
Microbiota , Solo , Solo/química , Esterco , Nitrogênio/metabolismo , Agricultura/métodos , Grão Comestível/metabolismo , Fertilizantes/análise , Microbiologia do Solo
11.
Conserv Biol ; 38(2): e14187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37768192

RESUMO

Belowground biodiversity distribution does not necessarily reflect aboveground biodiversity patterns, but maps of soil biodiversity remain scarce because of limited data availability. Earthworms belong to the most thoroughly studied soil organisms and-in their role as ecosystem engineers-have a significant impact on ecosystem functioning. We used species distribution modeling (SDMs) and available data sets to map the spatial distribution of commonly observed (i.e., frequently recorded) earthworm species (Annelida, Oligochaeta) across Europe under current and future climate conditions. First, we predicted potential species distributions with commonly used models (i.e., MaxEnt and Biomod) and estimated total species richness (i.e., number of species in a 5 × 5 km grid cell). Second, we determined how much the different types of protected areas covered predicted earthworm richness and species ranges (i.e., distributions) by estimating the respective proportion of the range area. Earthworm species richness was high in central western Europe and low in northeastern Europe. This pattern was mainly associated with annual mean temperature and precipitation seasonality, but the importance of predictor variables to species occurrences varied among species. The geographical ranges of the majority of the earthworm species were predicted to shift to eastern Europe and partly decrease under future climate scenarios. Predicted current and future ranges were only poorly covered by protected areas, such as national parks. More than 80% of future earthworm ranges were on average not protected at all (mean [SD] = 82.6% [0.04]). Overall, our results emphasize the urgency of considering especially vulnerable earthworm species, as well as other soil organisms, in the design of nature conservation measures.


Efectos del clima sobre la distribución y conservación de la lombriz de tierra europea Resumen La distribución de la biodiversidad del subsuelo no refleja necesariamente los patrones de biodiversidad, pero los mapas de la biodiversidad del suelo aún son escasos debido a la disponibilidad limitada de datos. Las lombrices son uno de los organismos del suelo más estudiados a detalle­en su papel de ingenieros del ecosistema­y tienen un impacto significativo sobre el funcionamiento de ecosistema. Usamos modelos de distribución de especies (MDE) y conjuntos de datos disponibles para mapear la distribución espacial de las especies (Annelida, Oligochaeta) de lombrices más observadas (es decir, registradas con frecuencia) en toda Europa bajo el clima actual y el futuro. Primero pronosticamos la distribución potencial de las especies con modelos de uso común (MaxEnt y Biomod) y estimamos la riqueza total de especies (número de especies en una cuadrícula de 5 × 5 km). Después determinamos cuánto pronosticaban los diferentes tipos de áreas protegidas contempladas la riqueza de lombrices y la distribución de las especies mediante la estimación de la proporción respectiva del rango del área. La riqueza de especies fue alta en el occidente central y baja en el noreste de Europa. Este patrón estuvo asociado principalmente con la temperatura media anual y la estacionalidad de la precipitación, aunque la importancia de las variables de pronóstico para la presencia de la especie varió entre especies. Se pronosticó que la distribución geográfica de la mayoría de las especies cambiaría al este de Europa y disminuiría parcialmente bajo los escenarios climáticos futuros. El pronóstico de la distribución actual y futura contaba con una cobertura deficiente de las áreas protegidas, como los parques nacionales. En promedio, más del 80% de la distribución futura de las lombrices no estaba protegido (promedio [SD] = 82.6% [0.04]). En general, nuestros resultados destacan la urgencia por considerar a las especies vulnerables de lombrices, así como a otros organismos del suelo, en el diseño de las medidas de conservación.


Assuntos
Ecossistema , Oligoquetos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Solo , Mudança Climática
12.
Sci Total Environ ; 913: 169335, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103613

RESUMO

Soil erosion on agricultural land is a major threat for food and raw materials production. It has become a major concern in rubber (Hevea brasiliensis) plantations introduced on sloping ground. Alternative agroecological crop management practices must be investigated. One aim of our study was to assess the ability of logging residues (i.e., trunks, branches, leaves and stumps of a clearcut plantation) and of legume cover (Pueraria phaseoloides) to mitigate N, P and K losses through runoff and soil detachment in a young rubber plantation. The other aim was to investigate the relationships of these nutrient losses with soil structure and soil macrofauna diversity. Runoff and soil loss were monitored for 3 years using 1-m2 plots under different practices as regards the management of logging residues and the use or not of a legume. The monitoring started when rubber trees were one-year-old. The planting row, where soil was bare, was the hotspot of soil erosion, with an average runoff of 832 mm y-1 and soil loss of 3.2 kg m-2 y-1. Sowing a legume in the inter-row reduced runoff and soil loss by 88 % and 98 % respectively, compared to bare soil. Spreading logging residues as well as growing a legume cover almost eliminated runoff and soil detachment (19 mm y-1 and 4 g m-2 y-1 respectively). Nutrient losses were negligible as long as the soil surface was covered by a legume crop, with or without logging residues. Total N loss from soil detachment ranged from 0.02 to 0.2 g m-2 y-1, for example. Spreading logging residues in the inter-rows significantly improved soil structure and soil macrofauna diversity compared to bare soil. Nutrient losses from runoff and soil detachment were negatively correlated with improved soil structure and soil macrofauna diversity. We recommend investigating alternative ways to manage planting rows.


Assuntos
Fabaceae , Hevea , Solo/química , Borracha , Agricultura , Verduras
13.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37838473

RESUMO

Soil invertebrates contribute significantly to vital ecosystem functions such as the breakdown of organic matter and cycling of essential nutrients, but our knowledge of their large-scale distribution in agricultural systems is limited, which hinders our ability to robustly predict how they will respond to future global change scenarios. Here, we employed metabarcoding analysis of eukaryotic 18S rRNA genes to examine the diversity and community composition of invertebrates in 528 sorghum rhizosphere and bulk soils, collected from 53 experimental field sites across China. Our results revealed that Nematoda, Arthropoda and Annelida were the dominant soil invertebrate groups in agroecosystems. Among all the climatic and soil parameters we examined, precipitation seasonality (i.e. the irregular distribution of precipitation during a normal year) had the strongest relationship with the richness of soil invertebrates, with an increase in soil invertebrate richness predicted with increasing precipitation seasonality. Mean annual precipitation and soil pH were the most important predictors of soil invertebrate community structure, with numerous invertebrate phylotypes showing either significantly positive or negative relationships with these two variables. Our findings suggest that shifts in precipitation patterns and soil pH, induced by future climate change and agricultural practices, will have important consequences for the distribution of soil invertebrate communities, with implications for agricultural ecosystem sustainability.


Assuntos
Ecossistema , Nematoides , Animais , Solo/química , Nematoides/genética , Mudança Climática , Concentração de Íons de Hidrogênio , Microbiologia do Solo
14.
New Phytol ; 240(5): 2020-2034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700504

RESUMO

Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Agricultura , Gases , Biota , Nutrientes , Óxido Nitroso , Fertilizantes
15.
Proc Natl Acad Sci U S A ; 120(33): e2304663120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549278

RESUMO

Soil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g., animals) or report values for diverse groups without partitioning species that live in soil versus other habitats. Here, we reviewed the biodiversity literature to show that soil is likely home to 59 ± 15% of the species on Earth. We therefore estimate an approximately two times greater soil biodiversity than previous estimates, and we include representatives from the simplest (microbial) to most complex (mammals) organisms. Enchytraeidae have the greatest percentage of species in soil (98.6%), followed by fungi (90%), Plantae (85.5%), and Isoptera (84.2%). Our results demonstrate that soil is the most biodiverse singular habitat. By using this estimate of soil biodiversity, we can more accurately and quantitatively advocate for soil organismal conservation and restoration as a central goal of the Anthropocene.


Assuntos
Biodiversidade , Solo , Animais , Ecossistema , Fungos , Plantas , Mamíferos
16.
Sci Total Environ ; 899: 166437, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604369

RESUMO

Urbanization negatively impacts aboveground biodiversity, such as bird and insect communities. City parks can reduce these negative impacts by providing important habitat. However, it remains poorly understood how the degree of urbanization and vegetation types within city parks (e.g., lawns, woodland) impact soil biodiversity. Here we investigated the impact of the degree of urbanization (urban vs. suburban) and vegetation type (lawn, shrub-lawn, tree-lawn and tree-shrub mixtures) on soil biodiversity in parkland systems. We used eDNA metabarcoding to characterize soil biodiversity of bacteria, fungi, protists, nematodes, meso- and macrofauna across park vegetation types in urban and suburban regions in Xiamen, China. We observed a strong effect of the degree of urbanization on the richness of different soil biota groups, with higher species richness of protists and meso/macrofauna in urban compared to suburban areas, while the richness of bacteria and fungi did not differ, and the difference of nematode richness depended on vegetation type. At the functional level, increased degree of urbanization associated with greater species richness of bacterivores, plant pathogens and animal parasites. These urbanization effects were at least partly modulated by higher soil phosphorous levels in urban compared to suburban sites. Also, the vegetation type impacted soil biodiversity, particularly fungal richness, with the richness of pathogenic and saprotrophic fungi increasing from lawn to tree-shrub mixtures. Tree-shrub mixtures also had the highest connectedness between biotas and lowest variation in the soil community structure. Overall, we show that soil biodiversity is strongly linked to the degree of urbanization, with overall richness increasing with urbanization, especially in bacterivores, plant pathogens and animal parasites. Targeted management of vegetation types in urban areas should provide a useful way to help mitigate the negative effect of urbanization on soil biodiversity.


Assuntos
Biodiversidade , Urbanização , Animais , Biota , China , Solo
17.
Glob Chang Biol ; 29(22): 6276-6285, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578170

RESUMO

The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.

18.
Life (Basel) ; 13(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511911

RESUMO

Under the increasing global energy demand, the new European Union Biodiversity Strategy for 2030 encourages combinations of energy production systems compatible with biodiversity conservation; however, in photovoltaic parks, panels shadowing the effects on soil health and biodiversity are still unknown. This study (location: Northern Italy) aimed to evaluate the effect of ground-mounted photovoltaic (GMPV) systems on soil arthropod biodiversity, considering two parks with different vegetation management: site 1-grassland mowed with tractor; site 2-grassland managed with sheep and donkeys. Three conditions were identified in each park: under photovoltaic panel (row), between the panel rows (inter-row), and around the photovoltaic plant (control). The soil pH and organic matter (SOM), soil arthropod community, biodiversity, and soil quality index (e.g., QBS-ar index) were characterised. Differences between the two GMPVs were mainly driven by the SOM content (higher values where grazing animals were present). No differences were observed in site 1, even if a high heterogeneity of results was observed for the soil biodiversity parameters under the panels. In site 2, SOM and pH, as well as arthropods biodiversity and QBS-ar, showed low values in the row. Soil fauna assemblages were also affected by ground-mounted panels, where Acarina, Collembola, Hymenoptera, and Hemiptera showed the lowest density in the row. This study suggests that ground-mounted solar panels had significant effects on below-ground soil fauna, and was more marked depending on the system management. Furthermore, the results obtained for the inter-row were similar to the control, suggesting that the area between the panel rows could be considered a good hotspot for soil biodiversity.

19.
Glob Chang Biol ; 29(19): 5706-5719, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449367

RESUMO

Soil eukaryotes play a crucial role in maintaining ecosystem functions and services, yet the factors driving their diversity and distribution remain poorly understood. While many studies focus on some eukaryotic groups (mostly fungi), they are limited in their spatial scale. Here, we analyzed an unprecedented amount of observational data of soil eukaryomes at continental scale (787 sites across Europe) to gain further insights into the impact of a wide range of environmental conditions (climatic and edaphic) on their community composition and structure. We found that the diversity of fungi, protists, rotifers, tardigrades, nematodes, arthropods, and annelids was predominantly shaped by ecosystem type (annual and permanent croplands, managed and unmanaged grasslands, coniferous and broadleaved woodlands), and higher diversity of fungi, protists, nematodes, arthropods, and annelids was observed in croplands than in less intensively managed systems, such as coniferous and broadleaved woodlands. Also in croplands, we found more specialized eukaryotes, while the composition between croplands was more homogeneous compared to the composition of other ecosystems. The observed high proportion of overlapping taxa between ecosystems also indicates that DNA has accumulated from previous land uses, hence mimicking the land transformations occurring in Europe in the last decades. This strong ecosystem-type influence was linked to soil properties, and particularly, soil pH was driving the richness of fungi, rotifers, and annelids, while plant-available phosphorus drove the richness of protists, tardigrades, and nematodes. Furthermore, the soil organic carbon to total nitrogen ratio crucially explained the richness of fungi, protists, nematodes, and arthropods, possibly linked to decades of agricultural inputs. Our results highlighted the importance of long-term environmental variables rather than variables measured at the time of the sampling in shaping soil eukaryotic communities, which reinforces the need to include those variables in addition to ecosystem type in future monitoring programs and conservation efforts.


Assuntos
Artrópodes , Ecossistema , Animais , Solo/química , Eucariotos , Carbono , Biodiversidade , Europa (Continente) , Fungos , Microbiologia do Solo
20.
Mol Ecol Resour ; 23(7): 1477-1487, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259890

RESUMO

Soil protists are increasingly studied due to a release from previous methodological constraints and the acknowledgement of their immense diversity and functional importance in ecosystems. However, these studies often lack sufficient depth in knowledge, which is visible in the form of falsely used terms and false- or over-interpreted data with conclusions that cannot be drawn from the data obtained. As we welcome that also non-experts include protists in their still mostly bacterial and/or fungal-focused studies, our aim here is to help avoid some common errors. We provide suggestions for current terms to use when working on soil protists, like protist instead of protozoa, predator instead of grazer, microorganisms rather than microflora and other terms to be used to describe the prey spectrum of protists. We then highlight some dos and don'ts in soil protist ecology including challenges related to interpreting 18S rRNA gene amplicon sequencing data. We caution against the use of standard bioinformatic settings optimized for bacteria and the uncritical reliance on incomplete and partly erroneous reference databases. We also show why causal inferences cannot be drawn from sequence-based correlation analyses or any sampling/monitoring, study in the field without thorough experimental confirmation and sound understanding of the biology of taxa. Together, we envision this work to help non-experts to more easily include protists in their soil ecology analyses and obtain more reliable interpretations from their protist data and other biodiversity data that, in the end, will contribute to a better understanding of soil ecology.


Assuntos
Ecossistema , Solo , Eucariotos/genética , Ecologia , Biodiversidade , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...