Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Microbiol ; 15: 1416256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962123

RESUMO

Introduction: The effects of continuous cropping and rotation cropping, two important tobacco cultivation practices, on soil microbial communities at different stages remain unclear. Different planting patterns have been shown to influence soil physical and chemical properties, which in turn can affect the composition and diversity of soil microbial communities. Methods: In order to investigate the impact of different planting methods on soil microbial community structure, we selected two representative planting methods: continuous cropping (tobacco) and rotational cropping (tobacco-maize). These methods were chosen as the focal points of our research to explore the potential effects on soil microbial communities. High-throughput sequencing technology was employed to investigate the structure of soil microbial communities, as well as their relationships with soil environmental factors, by utilizing the 16S rRNA, ITS, and 18S genes. Furthermore, the interaction among microorganisms was explored through the application of the Random Matrix Theory (RMT) molecular ecological network approach. Results: There was no significant difference in α diversity, but significant difference in ß diversity based on Jaccard distance test. Compared to continuous cropping, crop rotation significantly increased the abundance of beneficial prokaryotes Verrucomicrobia and Rhodanobacter. These findings indicate that crop rotation promotes the enrichment of Verrucomicrobia and Rhodanobacter in the soil microbial community. AP and NH4-N had a greater effect on the community structure of prokaryotes and fungi in tobacco soil, while only AP had a greater effect on the community structure of protist. Molecular ecological network analysis showed that the network robustness and Cohesion of rotation were significantly higher than that of continuous cropping, indicating that the complexity and stability of molecular ecological networks were higher in the rotational, and the microbial communities cooperated more effectively, and the community structure was more stable. Discussion: From this point of view, rotational cropping is more conducive to changing the composition of soil microbial community, enhancing the stability of microbial network structure, and enhancing the potential ecological functions in soil.

2.
Plants (Basel) ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891287

RESUMO

Straw and biochar, two commonly used soil amendments, have been shown to enhance soil fertility and the composition of microbial communities. To compare the effects of straw and biochar on soil fertility, particularly focusing on soil dissolved organic matter (DOM) components, and the physiochemical properties of soil and microbial communities, a combination of high-throughput sequencing and three-dimensional fluorescence mapping technology was employed. In our study, we set up four treatments, i.e., without biochar and straw (B0S0); biochar only (B1S0); straw returning only (B0S1); and biochar and straw (B1S1). Our results demonstrate that soil organic matter (SOM), available nitrogen (AN), and available potassium (AK) were increased by 34.71%, 22.96%, and 61.68%, respectively, under the B1S1 treatment compared to the B0S0 treatment. In addition, microbial carbon (MBC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were significantly increased with the B1S1 treatment, by 55.13%, 15.59%, and 125.46%, respectively. The results also show an enhancement in microbial diversity, the composition of microbial communities, and the degree of soil humification with the application of biochar and straw. Moreover, by comparing the differences in soil fertility, DOM components, and other indicators under different treatments, the combined treatments of biochar and straw had a more significant positive impact on paddy soil fertility compared to biochar. In conclusion, our study revealed the combination of straw incorporation and biochar application has significant impacts and is considered an effective approach to improving soil fertility.

3.
Plants (Basel) ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891335

RESUMO

Moso bamboo (Phyllostachys heterocycla cv. Pubescens) is known for its high capacity to sequester atmospheric carbon (C), which has a unique role to play in the fight against global warming. However, due to rising labor costs and falling bamboo prices, many Moso bamboo forests are shifting to an extensive management model without fertilization, resulting in gradual degradation of Moso bamboo forests. However, many Moso bamboo forests are being degraded due to rising labor costs and declining bamboo timber prices. To delineate the effect of degradation on soil microbial carbon sequestration, we instituted a rigorous analysis of Moso bamboo forests subjected to different degradation durations, namely: continuous management (CK), 5 years of degradation (D-5), and 10 years of degradation (D-10). Our inquiry encompassed soil strata at 0-20 cm and 20-40 cm, scrutinizing alterations in soil organic carbon(SOC), water-soluble carbon(WSOC), microbial carbon(MBC)and microbial residues. We discerned a positive correlation between degradation and augmented levels of SOC, WSOC, and MBC across both strata. Furthermore, degradation escalated concentrations of specific soil amino sugars and microbial residues. Intriguingly, extended degradation diminished the proportional contribution of microbial residuals to SOC, implying a possible decline in microbial activity longitudinally. These findings offer a detailed insight into microbial C processes within degraded bamboo ecosystems.

4.
Huan Jing Ke Xue ; 45(6): 3571-3583, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897777

RESUMO

In arid areas, fresh water resources are insufficient, and agricultural water mainly depends on shallow saline groundwater. However, long-term saline irrigation will cause soil salt accumulation and soil environment deterioration, which is not conducive to crop growth. In this study, based on the long-term irrigation of fresh water (0.35 dS·m-1, FW) and saline water (8.04 dS·m-1, SW), biochar (3.7 t·hm-2, BC) and straw (6 t·hm-2, ST) were added to the soil by an equal-carbon design. The aim was to clarify the effects of biochar and straw returning on the physical and chemical properties and microbial community structure of salinized soil. The results showed that saline irrigation significantly increased soil water content, electrical conductivity, available phosphorus, and total carbon content but significantly decreased pH value and available potassium content. The contents of available phosphorus, available potassium, and total carbon in soil were significantly increased by biochar and straw returning, but the conductivity value of soil irrigated with saline water was significantly decreased. The dominant bacteria in each treatment were Proteobacteria, Actinomycetes, Acidobacteria, Chloromycetes, and Blastomonas. Saline water irrigation significantly increased the relative abundance of Blastomonas and Proteobacteria but significantly decreased the relative abundance of Acidobacteria and Actinobacteria. Under the condition of fresh water irrigation, the relative abundance of Chlorocurvula was significantly reduced by the return of biochar. Straw returning significantly increased the relative abundance of Proteobacteria but significantly decreased the relative abundance of Acidobacteria, Actinomyces, Chloromyces, and Blastomonas. Under saline irrigation, the relative abundance of Chlorocurvula and Blastomonas were significantly reduced by biochar return to field. Straw returning significantly increased the relative abundance of Proteobacteria but significantly decreased the relative abundance of Acidobacteria, Actinomyces, Chloromyces, and Blastomonas. LEfSe analysis showed that saline irrigation decreased the potential markers and functional numbers of soil microorganisms.Under saline irrigation, biochar returning increased the number of potential markers and functions of soil microorganisms. Straw returning to field increases the number of potential markers of soil microorganisms. RDA results showed that soil microbial community and functional structure were significantly correlated with EC1:5, SWC, and pH. Saline water irrigation will deteriorate the soil environment, which is not conducive to agricultural production, among which EC1:5, SWC, and pH are important factors driving changes in soil microbial community and functional structure. Using biochar and straw to return to the field can reduce the harm of salt to soil and crops, laying a foundation for improving agricultural productivity.


Assuntos
Irrigação Agrícola , Carvão Vegetal , Gossypium , Caules de Planta , Microbiologia do Solo , Solo , Irrigação Agrícola/métodos , Solo/química , Gossypium/crescimento & desenvolvimento , Caules de Planta/química , Águas Salinas , Microbiota , Bactérias/classificação , Bactérias/crescimento & desenvolvimento
5.
Appl Environ Microbiol ; 90(6): e0058924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814059

RESUMO

Dormant microsclerotia play a vital role in the survival and spread of Verticillium longisporum, as they can stay viable in the soil and maintain their infectivity for many years. In our previous work, we revealed that soil bacterial volatiles are a key inhibitory factor causing microsclerotia dormancy in the soil. In this study, we further demonstrate that root exudates collected from both host and non-host plants can effectively rescue microsclerotia from bacterial suppression and initiate germination. To identify the specific compounds in root exudates responsible for microsclerotia germination, we fractionated the collected root exudates into polar and non-polar compounds. Subsequently, we conducted comprehensive bioassays with each fraction on germination-suppressed microsclerotia. The result revealed a pivotal role of primary metabolites in root exudates, particularly glutamic acid, in triggering microsclerotia germination and overcoming bacterial inhibition. Moreover, our studies revealed a decrease in inhibitory bacterial volatile fatty acids when bacteria were cultured in the presence of root exudates or glutamic acid. This suggests a potential mechanism, by which root exudates set-off bacterial suppression on microsclerotia. Here, we reveal for the first time that plant root exudates, instead of directly inducing the germination of microsclerotia, enact a set-off effect by counteracting the suppressive impact of soil bacteria on the microsclerotia germination process. This nuanced interaction advances our understanding of the multifaceted dynamics governing microsclerotia dormancy and germination in the soil environment. IMPORTANCE: Our research provides first-time insights into the crucial interaction between plant root exudates and soil bacteria in regulating the germination of Verticillium longisporum microsclerotia, a significant structure in the survival and proliferation of this soil-borne pathogen. We describe so far unknown mechanisms, which are key to understand how root infections on oilseed rape can occur. By pinpointing primary metabolites in root exudates as key factors in overcoming bacteria-induced dormancy and promote microsclerotia germination, our study highlights the potential for exploiting plant - as well as soil microbe-derived - compounds to control V. longisporum. This work underscores the importance of elucidating the nuanced interactions within the soil ecosystem to devise innovative strategies for managing root infective plant diseases, thereby contributing to the resilience and health of cropping systems.


Assuntos
Exsudatos de Plantas , Raízes de Plantas , Microbiologia do Solo , Verticillium , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Verticillium/crescimento & desenvolvimento , Verticillium/fisiologia , Exsudatos de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bactérias/metabolismo , Bactérias/classificação
6.
Microorganisms ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792788

RESUMO

The soil contains abundant and diverse microorganisms, which interrelate closely with the aboveground vegetation and impact the structure and function of the forest ecosystem. To explore the effect of vegetation diversity on soil microbial functional diversity in taiga forests, we selected significantly different important values of Larix gmelinii as experimental grouping treatments based on plant investigation from fixed plots in Da Xing'anling Mountains. Following that, we collected soil samples and applied the Biolog-ECO microplate method to investigate differences in carbon source utilization, features of functional diversity in soil microorganisms, and factors influencing them in taiga forests. The AWCD decreased as the important value of Larix gmelinii grew, and soil microorganisms preferred carboxylic acids, amino acids, and carbohydrates over polymers, phenolic acids, and amines. The Shannon and McIntosh indexes decreased significantly with the increase of the important value of Larix gmelinii (p < 0.05) and were positively correlated with soil SOC, MBC, C/N, and pH, but negatively with TN, AP, and AN. Redundancy analysis revealed significant effects on soil microbial functional diversity from soil C/N, SOC, AP, MBC, TN, pH, AN, and WC. To sum up, heterogeneous habitats of taiga forests with different important values altered soil microbial functional diversity.

7.
J Environ Sci (China) ; 144: 172-184, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802229

RESUMO

Chlorpyrifos is a pesticide widely used in agricultural production with a relatively long residual half-life in soil. Addressing the problem of residual chlorpyrifos is of universal concern. In this study, rice hull biochar was used as an immobilized carrier to prepare the immobilized strain H27 for the remediation of chlorpyrifos-contamination soil. Soil microorganisms after remediation were investigated by ecotoxicological methods. The immobilized strain H27 had the highest removal rate of chlorpyrifos when 10% bacterial solution was added to the liquid medium containing 0.075-0.109 mm diameter biochar cultured for 22 hr. This study on the removal of chlorpyrifos by immobilized strain H27 showed that the initial concentration of chlorpyrifos in solution was 25 mg/L, and the removal rate reached 97.4% after 7 days of culture. In the soil, the removal rate of the immobilized bacteria group increased throughout the experiment, which was significantly higher than that of the free bacteria and biochar treatment groups. The Biolog-ECO test, T-RFLP and RT-RCR were used to study the effects of the soil microbial community and nitrogen cycling functional genes during chlorpyrifos degradation. It was found that ICP group had the highest diversity index among the four treatment groups. The microflora of segment containing 114 bp was the dominant bacterial community, and the dominant microflora of the immobilized bacteria group was more evenly distributed. The influence of each treatment group on ammonia-oxidizing bacteria (AOB) was greater than on ammonia-oxidizing archaea (AOA). This study offers a sound scientific basis for the practical application of immobilized bacteria to reduce residual soil pesticides.


Assuntos
Bacillus , Biodegradação Ambiental , Clorpirifos , Microbiologia do Solo , Poluentes do Solo , Clorpirifos/metabolismo , Poluentes do Solo/metabolismo , Bacillus/metabolismo , Carvão Vegetal/química , Solo/química
8.
Front Microbiol ; 15: 1370427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572228

RESUMO

Clubroot, caused by Plasmodiophora brassicae, is a major disease that significantly impairs the yield of cruciferous crops and causes significant economic losses across the globe. The prevention of clubroot, especially in tumorous stem mustard (without resistant varieties), are is limited and primarily relies on fungicides. Engineered nanoparticles have opened up new avenues for the management of plant diseases, but there is no report on their application in the prevention of clubroot. The results showed that the control efficacy of 500 mg/L MgO NPs against clubroot was 54.92%. However, when the concentration was increased to 1,500 and 2,500 mg/L, there was no significant change in the control effect. Compared with CK, the average fresh and dry weight of the aerial part of plants treated with MgO NPs increased by 392.83 and 240.81%, respectively. Compared with the F1000 treatment, increases were observed in the content of soil available phosphorus (+16.72%), potassium (+9.82%), exchangeable magnesium (+24.20%), and water-soluble magnesium (+20.64%) in the 1,500 mg/L MgO NPs treatment. The enzyme-linked immune sorbent assay (ELISA) results showed that the application of MgO NPs significantly increased soil peroxidase (POD, +52.69%), alkaline protease (AP, +41.21%), alkaline phosphatase (ALP, +79.26%), urease (+52.69%), and sucrase (+56.88%) activities; And also increased plant L-phenylalanine ammonla-lyase (PAL, +70.49%), polyphenol oxidase (PPO, +36.77%), POD (+38.30%), guaiacol peroxidase (POX, +55.46%) activities and salicylic acid (SA, +59.86%) content. However, soil and plant catalase (CAT, -27.22 and - 19.89%, respectively), and plant super oxidase dismutase (SOD, -36.33%) activities were significantly decreased after the application of MgO NPs. The metagenomic sequencing analysis showed that the MgO NPs treatments significantly improved the α-diversity of the rhizosphere soil microbial community. The relative abundance of beneficial bacteria genera in the rhizosphere soil, including Pseudomonas, Sphingopyxis, Acidovorax, Variovorax, and Bosea, was significantly increased. Soil metabolic functions, such as oxidative phosphorylation (ko00190), carbon fixation pathways in prokaryotes (ko00720), indole alkaloid biosynthesis (ko00901), and biosynthesis of various antibiotics (ko00998) were significantly enriched. These results suggested that MgO NPs might control clubroot by promoting the transformation and utilization of soil nutrients, stimulating plant defense responses, and enriching soil beneficial bacteria.

9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1206-1216, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621967

RESUMO

Soil microbiome is a key evaluation index of soil health. Previous studies have shown that organic fertilizer from traditional Chinese medicine(TCM)residues can improve the yield and quality of cultivated traditional Chinese medicinal materials. However, there are few reports on the effects of organic fertilizer from TCM residues on soil microbiome. Therefore, on the basis of evaluating the effects of organic fertilizer from TCM residues on the yield and quality of cultivated Salvia miltiorrhiza, the metagenomic sequencing technique was used to study the effects of organic fertilizer from TCM residues on rhizosphere microbiome community and function of cultivated S. miltiorrhiza. The results showed that:(1) the application of organic fertilizer from TCM residues promoted the growth of S. miltiorrhiza and the accumulation of active components, and the above-ground and underground dry weight and fresh weight of S. miltiorrhiza increased by 371.4%, 288.3%, 313.4%, and 151.9%. The increases of rosmarinic acid and salvianolic acid B were 887.0% and 183.0%.(2)The application of organic fertilizer from TCM residues significantly changed the rhizosphere bacterial and fungal community structures, and the microbial community composition was significantly different.(3)The relative abundance of soil-beneficial bacteria, such as Nitrosospira multiformis, Bacillus subtilis, Lysobacter enzymogenes, and Trichoderma was significantly increased by the application of organic fertilizer from TCM residues.(4)KEGG function prediction analysis showed that metabolism-related microorganisms were more easily enriched in the soil environment after organic fertilizer application. The abundance of functional genes related to nitrification and denitrification could also be increased after the application of organic fertilizer from TCM residues. The results of this study provide guidance for the future application of organic fertilizer from TCM residues in the cultivation of traditio-nal Chinese medicinal materials and enrich the content of green cultivation technology of traditional Chinese medicinal materials.


Assuntos
Micobioma , Salvia miltiorrhiza , Solo/química , Salvia miltiorrhiza/química , Fertilizantes , Medicina Tradicional Chinesa , Bactérias/genética , Microbiologia do Solo
10.
Ying Yong Sheng Tai Xue Bao ; 35(3): 713-720, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646759

RESUMO

The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.


Assuntos
Carvão Vegetal , Cucumis sativus , Nitrogênio , Raízes de Plantas , Plântula , Solo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Nitrogênio/metabolismo , Solo/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Agricultura/métodos , Rizosfera
11.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674724

RESUMO

In recent years, the Sanjiang Plain has experienced drastic human activities, which have dramatically changed its ecological environment. Soil microorganisms can sensitively respond to changes in soil quality as well as ecosystem function. In this study, we investigated the changes in soil microbial community diversity and composition of three typical land use types (forest, wetland and cropland) in the Sanjiang Plain using phospholipid fatty acid analysis (PLFA) technology, and 114 different PLFA compounds were identified. The results showed that the soil physicochemical properties changed significantly (p < 0.05) among the different land use types; the microbial diversity and abundance in cropland soil were lower than those of the other two land use types. Soil pH, soil water content, total organic carbon and available nitrogen were the main soil physico-chemical properties driving the composition of the soil microbial community. Our results indicate that the soil microbial community response to the three different habitats is complex, and provide ideas for the mechanism by which land use changes in the Sanjiang Plain affect the structure of soil microbial communities, as well as a theoretical basis for the future management and sustainable use of the Sanjiang plain, in the northeast of China.

12.
PeerJ ; 12: e17240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685939

RESUMO

Background: Schisandra sphenanthera Rehd. et Wils. is a plant used in traditional Chinese medicine (TCM). However, great differences exist in the content of active secondary metabolites in various parts of S. sphenanthera. Do microorganisms critically influence the accumulation of active components in different parts of S. sphenanthera? Methods: In this study, 16S/ITS amplicon sequencing analysis was applied to unravel microbial communities in rhizospheric soil and different parts of wild S. sphenanthera. At the same time, the active secondary metabolites in different parts were detected, and the correlation between the secondary metabolites and microorganisms was analyzed. Results: The major components identified in the essential oils were sesquiterpene and oxygenated sesquiterpenes. The contents of essential oil components in fruit were much higher than that in stem and leaf, and the dominant essential oil components were different in these parts. The dominant components of the three parts were γ-muurolene, δ-cadinol, and trans farnesol (stem); α-cadinol and neoisolongifolene-8-ol (leaf); isosapathulenol, α-santalol, cedrenol, and longiverbenone (fruit). The microbial amplicon sequences were taxonomically grouped into eight (bacteria) and seven (fungi) different phyla. Community diversity and composition analyses showed that different parts of S. sphenanthera had similar and unique microbial communities, and functional prediction analysis showed that the main functions of microorganisms were related to metabolism. Moreover, the accumulation of secondary metabolites in S. sphenanthera was closely related to the microbial community composition, especially bacteria. In endophytic bacteria, Staphylococcus and Hypomicrobium had negative effects on five secondary metabolites, among which γ-muurolene and trans farnesol were the dominant components in the stem. That is, the dominant components in stems were greatly affected by microorganisms. Our results provided a new opportunity to further understand the effects of microorganisms on the active secondary metabolites and provided a basis for further research on the sustainable utilization of S. sphenanthera.


Assuntos
Schisandra , Schisandra/metabolismo , Schisandra/química , Microbiologia do Solo , Microbiota/genética , Óleos Voláteis/metabolismo , Metabolismo Secundário , Caules de Planta/microbiologia , Caules de Planta/metabolismo , Sesquiterpenos/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo
13.
Sci Total Environ ; 930: 172509, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642749

RESUMO

Biochar, a widely used material for soil amendment, has been found to offer numerous advantages in improving soil properties and the habitats for soil microorganisms. However, there is still a lack of global perspectives on the influence of various levels of biochar addition on soil microbial diversity and primary components. Thus, in our study, we performed a global meta-analysis of studies to determine how different doses of biochar affect soil total carbon (C), nitrogen (N), pH, alpha- and beta-diversity, and the major phyla of both bacterial and fungal communities. Our results revealed that biochar significantly increased soil pH by 4 %, soil total C and N by 68 % and 22 %, respectively, in which the positive effects increased with biochar doses. Moreover, biochar promoted soil bacterial richness and evenness by 3-8 % at the biochar concentrations of 1-5 % (w/w), while dramatically shifting bacterial beta-diversity at the doses of >2 % (w/w). Specifically, biochar exhibited significantly positive effects on bacterial phyla of Acidobacteria, Bacteroidetes, Gemmatimonadetes, and Proteobacteria, especially Deltaproteobacteria and Gammaproteobacteria, by 4-10 % depending on the concentrations. On the contrary, the bacterial phylum of Verrucomicrobia and fungal phylum of Basidiomycota showed significant negative responses to biochar by -8 % and -24 %, respectively. Therefore, our meta-analysis provides theoretical support for the development of optimized agricultural management practices by emphasizing biochar application dosing.


Assuntos
Bactérias , Biodiversidade , Carvão Vegetal , Fungos , Microbiologia do Solo , Solo , Bactérias/classificação , Solo/química , Carbono/análise , Nitrogênio/análise
14.
Sci Total Environ ; 923: 171332, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447716

RESUMO

The synergy between bacteria and fungi is a key determinant of soil health and have a positive effect on plant development under drought conditions, with the potentially enhancing the sustainability of amending soil with natural materials. However, identifying how soil amendments influence plant growth is often difficult due to the complexity of microorganisms and their links with different soil amendment types and environmental factors. To address this, we conducted a field experiment to examine the impact of soil amendments (biochar, Bacillus mucilaginosus, Bacillus subtilis and super absorbent polymer) on plant growth. We also assessed variations in microbial community, links between fungi and bacteria, and soil available nutrients, while exploring how the synergistic effects between fungus and bacteria influenced the response of soil amendments to plant growth. This study revealed that soil amendments reduced soil bacterial diversity but increased the proportion of the family Enterobacteriaceae, Nitrosomonadaceae, and also increased soil fungal diversity and the proportion of the sum of the family Lasiosphaeriaceae, Chaetomiaceae, Pleosporaceae. Changes in soil microbial communities lead to increase the complexity of microbial co-occurrence networks. Furthermore, this heightened network complexity enhanced the synergy of soil bacteria and fungi, supporting bacterial functions related to soil nutrient cycling, such as metabolic functions and genetic, environmental, and cellular processes. Hence, the BC and BS had 3.0-fold and 0.5-fold greater root length densities than CK and apple tree shoot growth were increased by 62.14 %,50.53 % relative to CK, respectively. In sum, our results suggest that the synergistic effect of bacteria and fungi impacted apple tree growth indirectly by modulating soil nutrient cycling. These findings offer a new strategy for enhancing the quality of arable land in arid and semi-arid regions.


Assuntos
Microbiota , Solo , Bactérias/metabolismo , Nutrientes , Fungos/metabolismo , Microbiologia do Solo
15.
J Hazard Mater ; 469: 133994, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503210

RESUMO

The efficient remediation of the soil co-contaminated with heavy metals and polybrominated diphenyl ethers (PBDEs) from electronic disassembly zones is a new challenge. Here, we screened a fungus of F. solani (F.s) can immobilize Cd and remove PBDEs. wIt combined with tourmaline enhances the remediation of co- pollutants in the soil. Furthermore, the environment risks of the enhanced technology were assessed through the amount of Cd/BDE-153 in Amaranthus tricolor L. (amaranth) migrated from soil, as well as the changes of soil microorganism communities and enzyme activities. The results showed the combined treatment of tourmaline and F.s made the removal percentage of BDE-153 in rhizosphere soil co-contaminated with BDE-153 and Cd reached 46.5%. And the weak acid extractable Cd in rhizosphere soil decreased by 33.7% compared to control group. In addition, the combined remediation technology resulted in a 32.5% (22.8%), 45.5% (37.2%), and 50.7% (38.1%) decrease in BDE-153 (Cd) content in the roots, stems, and leaves of amaranth, respectively. Tourmaline combined with F.s can significantly increase soil microorganism diversity, soil dehydrogenase and urease activities, further improving the remediation rate of Cd and BDE-153co-pollutants in soil and the biomass of amaranth. This study provides the remediation technology of soil co-contaminated with heavy metal and PBDEs and ensure the maintenance of food security.


Assuntos
Amaranthus , Poluentes Ambientais , Metais Pesados , Bifenil Polibromatos , Silicatos , Poluentes do Solo , Solo , Cádmio , Biodegradação Ambiental , Éteres Difenil Halogenados/análise , Poluentes do Solo/análise , Metais Pesados/análise
16.
J Hazard Mater ; 467: 133680, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325094

RESUMO

Biodegradable mulches are widely recognized as ecologically friendly substances. However, their degradation percentage upon entering soils may vary based on mulch type and soil microbial activities, raising concerns about potential increases in microplastics (MPs). The effects of using different types of mulch on soil carbon pools and its potential to accelerate their depletion have not yet well understood. Therefore, we conducted an 18-month experiment to investigate mulch biodegradation and its effects on CO2 emissions. The experiment included burying soil with biodegradable mulch made of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), and control treatments with traditional mulch (PE) and no mulch (CK). The results indicated that PE did not degrade, and the degradation percentage of PLA and PBAT were 46.2% and 88.1%, and the MPs produced by the degradation were 6.7 × 104 and 37.2 × 104 items/m2, respectively. Biodegradable mulch, particularly PLA, can enhance soil microbial diversity and foster more intricate bacterial communities compared to PE. The CO2 emissions were 0.58, 0.74, 0.99, and 0.86 g C/kg in CK, PE, PLA, , PBAT, respectively. A positive correlation was observed between microbial abundance and diversity with CO2 emissions, while a negative correlation was observed with soil total organic carbon. Biodegradable mulch enhanced the transformation of soil organic C into CO2 by stimulating microbial activity.


Assuntos
Adipatos , Dióxido de Carbono , Microplásticos , Microplásticos/toxicidade , Plásticos , Carbono , Poliésteres , Solo
17.
J Hazard Mater ; 465: 133432, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219596

RESUMO

Microplastics can potentially affect the physical and chemical properties of soil, as well as soil microbial communities. This could, in turn, influence soil sulfur REDOX processes and the ability of soil to supply sulfur effectively. However, the specific mechanisms driving these effects remain unclear. To explore this, soil microcosm experiments were conducted to assess the impacts of polystyrene (PS) and polyphenylene sulfide (PPS) microplastics on sulfur reduction-oxidation (REDOX) processes in black, meadow, and paddy soils. The findings revealed that PS and PPS most significantly decreased SO42- in black soil by 9.4%, elevated SO42- in meadow soil by 20.8%, and increased S2- in paddy soil by 20.5%. PS and PPS microplastics impacted the oxidation process of sulfur in soil by influencing the activity of sulfur dioxygenase, which was mediated by α-proteobacteria and γ-proteobacteria, and the oxidation process was negatively influenced by soil organic matter. PS and PPS microplastics impacted the reduction process of sulfur in soil by influencing the activity of adenosine-5'-phosphosulfate reductase, sulfite reductase, which was mediated by Desulfuromonadales and Desulfarculales, and the reduction process was positively influenced by soil organic matter. In addition to their impacts on microorganisms, it was found that PP and PPS microplastics directly influenced the structure of soil enzymes, leading to alterations in soil enzyme activity. This study sheds light on the mechanisms by which microplastics impact soil sulfur REDOX processes, providing valuable insights into how microplastics influence soil health and functioning, which is essential for optimizing crop growth and maximizing yield in future agricultural practices.


Assuntos
Microplásticos , Solo , Plásticos , Agricultura , Poliestirenos , Enxofre
18.
Sci Total Environ ; 913: 169840, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38184256

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have emerged as a novel solution to combat Zn deficiency in agriculture. However, challenges persist regarding their Zn utilization efficiency and environmental impact. Fulvic acid (FA), as a relatively mature modified material, is a promising candidate to enhance the environmental stability of ZnO NPs. This study investigates modifying ZnO NPs with FA to improve their stability and increase Zn content in mung bean fruit and explores their effect on plants and the soil ecosystem. We combined FA and ZnO NPs (FZ-50) at mass ratios of 1: 5, 1: 2, and 4: 5, denoted as 20 % FZ, 50 % FZ, and 80 % FZ, respectively. Initial germination tests revealed that the 50 % FZ treatment improved sprout growth and Zn content and minimized agglomeration the most. A subsequent pot experiment compared FZ-50 with ZnO, ZnO NPs, and F + Z (1: 1 FA: ZnO NPs). Notably, the FZ-50 treatment (50 % FZ applied to the soil) demonstrated superior results, exhibiting a 30.25 % increase in yield, 121 % improvement in root nodule quality, and 56.38 % increase in Zn content, with no significant changes in enzyme activities (catalase and peroxidase). Furthermore, FZ-50 increased soil available Zn content and promoted soil microorganism diversity, outperforming ZnO and ZnO NPs. This study underscores the potential of FA as a relatively mature material for modifying ZnO NPs to increase grain Zn content, presenting a novel approach to addressing Zn deficiency in agriculture.


Assuntos
Benzopiranos , Fabaceae , Nanopartículas , Poluentes do Solo , Vigna , Óxido de Zinco , Zinco , Solo , Ecossistema , Biodiversidade , Poluentes do Solo/análise
19.
Sci Total Environ ; 912: 169183, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092212

RESUMO

Nanoplastics (NPs) presence in agricultural soils can affect plant growth and impact the quality of agricultural products. To investigate the effect of polyamide (PA) NPs and polyethylene (PE) NPs on carbohydrate metabolism and soil microorganisms during rice growth, rice seedlings were exposed to soil containing 2 g/kg of 100 nm PA or 100 nm PE powder for 33 d. The results revealed that 100 nm PE reduced shoot length and dry weight of rice by 4.14 % and 15.68 %, respectively. Analyzing the expression of hexokinase-2 (HXK), phosphofructokinase-1 (PFK), pyruvate kinase (PK) and isocitrate dehydrogenase (IDH), which are four genes related to carbohydrate metabolism, 100 nm PA decreased the expression of PFK and increased the expression of PK and IDH. 100 nm PE increased the expression of HXK, PFK, PK, and IDH. The results of soil microorganisms showed that 100 nm PA significantly effects on 3 bacterial phyla (Bacteroidota, Deinococcota, and Desulfobacterota), whereas 100 nm PE significantly effects on phylum Rozellomycota, class Umbelopsidomycetes, and an unclassified Firmicutes. Our study provides direct evidence of the negative effects of PA and PE on rice, which may be important for assessing the risk of NPs on agroecosystems.


Assuntos
Oryza , Solo , Microplásticos/metabolismo , Nylons/metabolismo , Nylons/farmacologia , Polietileno/metabolismo , Plântula , Metabolismo dos Carboidratos
20.
Front Microbiol ; 14: 1296916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075935

RESUMO

Introduction: Tobacco black shank is a devastating soil-borne disease caused by the oomycete Phytophthora nicotianae, severely hamper tobacco production worldwide. However, the synergistic effect of biocontrol bacteria and marine polysaccharides/oligosaccharides on tobacco black shank control was few documented. Methods: In this study, Bacillus amyloliquefaciens CAS02 (CAS02) and chitooligosaccharide (COS) were screened firstly, and their synergistic antagonistic effect against P. nicotianae and the underlying mechanism were investigated in vitro and in vivo. Results: In vitro experiments showed that, compared with the application of CAS02 or COS alone, co-application of CAS02 and COS significantly increased the inhibition rate against P. nicotianae by 11.67% and 63.31%, respectively. Furthermore, co-application of CAS02 and COS disrupted the structure of mycelia to a greater extent. The co-application of CAS02 and COS showed synergistic effect, with the relative control effect maintained above 60% during the 60-day pot experiment, significantly higher than that of application CAS02 or COS alone. The combined application of CAS02 and COS reduced the relative abundance of P. nicotianae in the rhizosphere soil and increased the relative abundance of bacterial taxa potentially involved in disease suppression, such as Nocardioides, Devosia and Bradyrhizobium. Meanwhile, CAS02 and COS synergistically activated salicylic acid (SA), ethylene (ET), and hypersensitive response (HR) defense signaling pathways in tobacco plants. Discussion: Our findings demonstrate that co-application of CAS02 and COS remarkably improve the relative control effect against tobacco black shank through multiple pathways and provide a promising strategy for the efficient green control of tobacco black shank.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...