Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt C): 359-368, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39298988

RESUMO

Na3MnZr(PO4)3, a typical manganese-based NASICON-type material, has consistently been at the forefront of research on cathode materials for sodium-ion batteries due to the abundant manganese reserve and high operating voltage. However, the severe Jahn-Teller effect, poor electronic conductivity and kinetic limitation of Na3MnZr(PO4)3 impose constraints on its rate capability and cycling performance, thereby hindering its practical application. To address this challenge, a ternary NASICON-type material Na3MnTi0.5Zr0.5(PO4)3/C, with a multi-metal synergistic effect, is proposed in this study. The substitution of Ti at Zr site significantly mitigates the Jahn-Teller effect induced by Mn3+. Furthermore, the stability of the ZrO bond is enhanced, leading to a more robust crystal structure overall. Cyclic voltammetry and constant-current intermittent titration techniques reveal that the appropriate Ti substitution markedly boosts the electronic conductivity and Na+ diffusion coefficient of the electrode material, thereby mitigating polarization effects and expediting electrode reaction rates. Leveraging the multi-effect of Ti substitution, the prepared Na3MnTi0.5Zr0.5(PO4)3/C presents an improved electrochemical performance. Notably, Na3MnTi0.5Zr0.5(PO4)3/C enables a high discharge capacity of 71.0 mAh g-1 at 10C and maintains 78.8 % capacity after 1000 cycles at 2C rate. This investigation establishes a robust theoretical foundation for comprehending the synergistic effects of multimetal systems in NASICON materials and offers insights into the development of cost-effective, high-performance cathode materials.

2.
ACS Appl Mater Interfaces ; 15(42): 49447-49457, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846901

RESUMO

Organic materials with multiple active sites and flexible structural designs are becoming popular for use in aqueous zinc-ion batteries (AZIBs). However, their applicability is limited due to the low specific capacity and poor cycle stability originating from the introduction of inactive units and high solubility. Herein, three organic molecules with tunable redox properties were synthesized using anhydride (PMDA, 1,2,4,5-benzenetetracarboxylic anhydride-1,2-diaminoanthraquinone, NTCDA, 1,4,5,8-naphthalenetetracarboxylic dianhydride-1,2-diaminoanthraquinone, and PTCDA, 3,4,9,10-perylenetetracarboxylic dianhydride-1,2-diaminoanthraquinone, referred to as PM12, NT12, and PT12) in the solid-phase method. Density functional theory (DFT) simulations and experiments identified that NT12 exhibits superior electrochemical performance compared with PM12 and PT12 because of the low energy gap and large aromatic conjugated structure. They demonstrated specific capacities of 106.7, 192.9, and 124.9 mA h g-1 at 0.05 A g-1, respectively. Especially, NT12 displayed excellent initial specific capacity (85.4 mA h g-1 at 1 A g-1) and remarkable capacity retention (64.1% for 3000 cycles) due to dual active centers (C═N and C═O). The all-NT12 full-cell also had excellent performance (127.1 mA h g-1 under 1 A g-1 and 80.6% over 200 cycles). The organic compounds synthesized in this work have potential applications of AZIBs, highlighting the importance of molecular design to develop the next generation of advanced materials.

3.
Waste Manag ; 157: 141-148, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538835

RESUMO

Annually increasing electric vehicles will undoubtedly end in tremendous amount of waste LiFePO4 (LFP) batteries. In this work, a highly-efficient and easy-going solid-phase method is proposed for direct regeneration of the waste LFP cathode material (W-LFP). The W-LFP is successfully regenerated via heat treatment with the addition of Li2CO3, CNTs and glucose. After activation, the dispersibility of CNTs in water is improved, making it easier to mix well with other materials. Also, the hydroxyl and carboxyl groups on CNTs have a certain degree of reducibility, which is conducive to the reduction of Fe3+ to Fe2+. After subsequent heat treatment, the three-dimensional conductive network composed of CNTs greatly enhances the conductivity and the ionic diffusion coefficient of LFP, thereby improving its electrochemical performance. Meanwhile, the decay and regeneration mechanisms of LFP are investigated by characterization and electrochemical testing. The regenerated LFP achieves an excellent specific capacity of 155.47 mAh/g at 0.05 C, which is around 99% that of new LFP. Additionally, the costs of main consumption in the regeneration process only account for 33.7% the price of new LFP. This low-cost, high-value-added and solid-phase direct regeneration process is proved to have great economic and energy-saving potential, which is promising for recycling the waste LFP cathode materials.


Assuntos
Fontes de Energia Elétrica , Lítio , Lítio/química , Eletrodos , Reciclagem , Íons/química , Resíduos
4.
Environ Sci Pollut Res Int ; 29(25): 37685-37699, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066826

RESUMO

Ni-Co bimetallic catalysts supported on coconut shell activated carbon are synthesized using solid-phase method and investigated for dry reforming of methane, to explore the impact of Ni:Co ratio on the catalyst activity and stability. The catalyst performances are evaluated under the temperature varying from 600 to 900 °C and gas hourly space velocity (GHSV) of 7200 mL/h·g-cat. The characterization results show that metal nanoparticles are produced on the support, and the bimetallic catalyst with an explicit Ni:Co ratio (2:1) is the most beneficial for metal particle dispersion and acquires the minimum particle size of 4.41 nm. The bimetallic catalysts with an explicit Ni:Co ratio of 1:2 and 1:1 exhibit a synergistic effect towards the conversions of CH4 and CO2, respectively. The experimental results reveal that the highest CH4 and CO2 conversions rise to 94.0% and 97.5% within 12 h at 900 °C on average, respectively, assisted with the two bimetallic catalysts. The intensity of disordered carbon and thermal stability are enhanced with the extension of reforming process, contributing to a long-term catalytic stability. Besides, no obvious carbon deposition is detected, leading to a highly catalytic stability for the bimetallic catalysts.


Assuntos
Carvão Vegetal , Metano , Dióxido de Carbono , Cocos , Níquel
5.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513986

RESUMO

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.

6.
Int J Biol Macromol ; 156: 1316-1322, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760010

RESUMO

To improve the hydrophobicity and thermoplastic processability of starch, lactic acid esterified starch (LA-e-starch) was prepared by in-situ solid phase esterification with corn starch as the raw material and LA as the esterifying agent. Fourier transform infrared spectroscopy confirmed that the esterification reaction was successful. The optimal esterification efficiency of LA-e-starch was obtained when the LA proportion was 20% by mass, catalyst ratio at 3%, reaction temperature 80 °C and reaction time 2.5 h. LA-e-starch was characterized by scanning electron microscopy (SEM), contact angle (CA) analysis, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as its water absorption rate evaluated. Results showed that in-situ solid phase esterification mainly occurred on starch granule surfaces and did not destroy the starch granularity. LA-e-starch surfaces were covered with a layer of polylactic acid resin, which caused starch granules to stick together. The initial contact angle of LA-e-starch was clearly larger than that of native starch and the water absorption rate lower than native starch in a 168 h test time, which showed that esterification effectively improved the hydrophobicity of starch. This esterification destroyed the crystalline structure of starch to some extent, resulting in a crystallinity reduction to 25.16%. In addition, the gelatinization temperature and enthalpy were lower than those of native starch. XRD and DSC analyses indicated that esterification modification increased starch thermoplasticity. Also, LA-e-starch exhibited better thermal stability than native starch, from which it was inferred that this application of esterification could improve the thermoplastic processability of starch modify the interfacial compatibility between starch and polymer resins.


Assuntos
Ácido Láctico/química , Amido/química , Esterificação , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
7.
Anal Bioanal Chem ; 410(18): 4301-4309, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29707754

RESUMO

Highly selective nitrogen-doped carbon quantum dots (ND-CQDs) for copper ion (Cu2+) determination were synthesized by a solvent-free pyrolysis of citric acid and histidine. The resultant ND-CQDs display a stable bright blue fluorescence with a satisfactory product yield of 56% and quantum yield of 16%. The ND-CQDs not only show good photostability under continuous UV irradiation, but are also dramatically stable against extreme ionic strengths. The solid powders of the ND-CQDs re-dispersed in water still maintain a strong blue fluorescence after storing at room temperature for 6 months. The ND-CQDs can be employed to selectively detect Cu2+ in a wide linear range of 0.6-30 µM. The detection limit is as low as 0.19 µM. The ND-CQDs were applied for Cu2+ detection in environmental water samples, fruit juice samples, and urine sample. Satisfactory recoveries of 96-102% with relative standard deviations below 3% were obtained. The research provided a promising prospect for selective detection of Cu2+ in the complex matrix. Graphical abstract Schematic illustration of the preparation of the ND-CQDs and its detection mechanism to Cu2.


Assuntos
Carbono/química , Cobre/análise , Nitrogênio/química , Pontos Quânticos , Cobre/urina , Fluorescência , Sucos de Frutas e Vegetais/análise , Limite de Detecção , Microscopia Eletrônica de Transmissão , Concentração Osmolar , Pós , Espectrometria de Fluorescência , Raios Ultravioleta , Água/química
8.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-732402

RESUMO

Introduction: ‘InTec Blood Grouping Test kit’ using solid-phase technology is a new method which may be used at outdoor blood donation site or at bed side as an alternative to the conventional tile method in view of its stability at room temperature and fulfilled the criteria as point of care test. This study aimed to compare the efficiency of this solid phase method (InTec Blood Grouping Test Kit) with the conventional tile method in determining the ABO and RhD blood group of healthy donors. Methods: A total of 760 voluntary donors who attended the Blood Bank, Penang Hospital or offsite blood donation campaigns from April to May 2014 were recruited. The ABO and RhD blood groups were determined by the conventional tile method and the solid phase method, in which the tube method was used as the gold standard. Results: For ABO blood grouping, the tile method has shown 100% concordance results with the gold standard tube method, whereas the solid-phase method only showed concordance result for 754/760 samples (99.2%). Therefore, for ABO grouping, tile method has 100% sensitivity and specificity while the solid phase method has slightly lower sensitivity of 97.7% but both with good specificity of 100%. For RhD grouping, both the tile and solid phase methods have grouped one RhD positive specimen as negative each, thus giving the sensitivity and specificity of 99.9% and 100% for both methods respectively. Conclusion: The ‘InTec Blood Grouping Test Kit’ is suitable for offsite usage because of its simplicity and user friendliness. However, further improvement in adding the internal quality control may increase the test sensitivity and validity of the test results.

9.
Polymers (Basel) ; 10(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30960845

RESUMO

Bamboo plastic composites have become a hot research topic and a key focus of research. However, many strong, polar, hydrophilic hydroxyl groups in bamboo flour (BF) results in poor interfacial compatibility between BF and hydrophobic polymers. Maleic anhydride-esterified (MAH-e-BF) and lactic acid-esterified bamboo flour (LA-e-BF) were prepared while using an in situ solid-phase esterification method with BF as the raw material and maleic anhydride or lactic acid as the esterifying agent. Fourier transform infrared spectroscopy results confirmed that BF esterification with maleic anhydride and lactic acid was successful, with the esterification degrees of MAH-e-BF and LA-e-BF at 21.04 ± 0.23% and 14.28 ± 0.17%, respectively. Esterified BF was characterized by scanning electron microscopy, contact angle testing, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that esterified BF surfaces were covered with graft polymer and the surface roughness and bonding degree of MAH-e-BF clearly larger than those of LA-e-BF. The hydrophobicity of esterified BF was significantly higher than BF and the hydrophobicity of MAH-e-BF was better than LA-e-BF. The crystalline structure of esterified BF showed some damage, while MAH-e-BF exhibited a greater decrease in crystallinity than LA-e-BF. Overall, the esterification reaction improved BF thermoplasticity, with the thermoplasticity of MAH-e-BF appearing to be better than LA-e-BF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA