Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 96(4): 1065-1071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32077109

RESUMO

Studies of pulse-type gymnotiform electric fishes have suggested that electric organ discharge waveforms (EODw) allow individuals to discriminate between conspecific and allospecific signals, but few have approached this experimentally. Here we implement a phase-locked playback technique for a syntopic species pair, Brachyhypopomus gauderio and Gymnotus omarorum. Both species respond to changes in stimulus waveform with a transitory reduction in the interpulse interval of their self-generated discharge, providing strong evidence of discrimination. We also document sustained rate changes in response to different EODws, which may suggest recognition of natural waveforms.


Assuntos
Peixe Elétrico/fisiologia , Fenômenos Eletromagnéticos , Gimnotiformes/fisiologia , Animais , Órgão Elétrico/fisiologia
2.
Fungal Biol ; 122(7): 677-691, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880203

RESUMO

Anthracnose is one of the most important plant diseases globally, occurring on a wide range of cultivated and wild host species. This study aimed to identify the Colletotrichum species associated with cashew anthracnose in Brazil, determine their phylogenetic relationships and geographical distribution, and provide some insight into the factors that may be influencing community composition. Colletotrichum isolates collected from symptomatic leaves, stems, inflorescences, and fruit of cultivated and wild cashew, across four Brazilian biomes, were identified as Colletotrichum chrysophilum, Colletotrichum fragariae, Colletotrichum fructicola, Colletotrichum gloeosporioides sensu stricto, Colletotrichum queenslandicum, Colletotrichum siamense and Colletotrichum tropicale. Colletotrichum siamense was the most dominant species. The greatest species richness was associated with cultivated cashew; leaves harbored more species than the other organs; the Atlantic Forest encompassed more species than the other biomes; and Pernambuco was the most species-rich location. However, accounting for the relative abundance of Colletotrichum species and differences in sample size across strata, the interpretation of which community is most diverse depends on how species are delimited. The present study provides valuable information about the Colletotrichum/cashew pathosystem, sheds light on the causal agents identification,and highlights the impact that species delimitation can have on ecological studies of fungi.


Assuntos
Anacardium/microbiologia , Biodiversidade , Colletotrichum/isolamento & purificação , Brasil , Colletotrichum/classificação , Colletotrichum/genética , Produtos Agrícolas/microbiologia , Ecossistema , Tipagem Molecular , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase
3.
mBio ; 9(1)2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487238

RESUMO

Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multihost pathogen that infects multiple grasses and cereals, is responsible for the most damaging rice disease (rice blast), and is of growing concern due to the recent introduction of wheat blast to Bangladesh from South America. However, the genetic structure and evolutionary history of M. oryzae, including the possible existence of cryptic phylogenetic species, remain poorly defined. Here, we use whole-genome sequence information for 76 M. oryzae isolates sampled from 12 grass and cereal genera to infer the population structure of M. oryzae and to reassess the species status of wheat-infecting populations of the fungus. Species recognition based on genealogical concordance, using published data or extracting previously used loci from genome assemblies, failed to confirm a prior assignment of wheat blast isolates to a new species (Pyricularia graminis-tritici). Inference of population subdivisions revealed multiple divergent lineages within M. oryzae, each preferentially associated with one host genus, suggesting incipient speciation following host shift or host range expansion. Analyses of gene flow, taking into account the possibility of incomplete lineage sorting, revealed that genetic exchanges have contributed to the makeup of multiple lineages within M. oryzae These findings provide greater understanding of the ecoevolutionary factors that underlie the diversification of M. oryzae and highlight the practicality of genomic data for epidemiological surveillance in this important multihost pathogen.IMPORTANCE Infection of novel hosts is a major route for disease emergence by pathogenic microorganisms. Understanding the evolutionary history of multihost pathogens is therefore important to better predict the likely spread and emergence of new diseases. Magnaporthe oryzae is a multihost fungus that causes serious cereal diseases, including the devastating rice blast disease and wheat blast, a cause of growing concern due to its recent spread from South America to Asia. Using whole-genome analysis of 76 fungal strains from different hosts, we have documented the divergence of M. oryzae into numerous lineages, each infecting a limited number of host species. Our analyses provide evidence that interlineage gene flow has contributed to the genetic makeup of multiple M. oryzae lineages within the same species. Plant health surveillance is therefore warranted to safeguard against disease emergence in regions where multiple lineages of the fungus are in contact with one another.


Assuntos
Fluxo Gênico , Magnaporthe/genética , Bangladesh , Biota , Grão Comestível/microbiologia , Transferência Genética Horizontal , Variação Genética , Magnaporthe/classificação , Magnaporthe/isolamento & purificação , Poaceae/microbiologia , Análise de Sequência de DNA , América do Sul , Sequenciamento Completo do Genoma
4.
Am J Phys Anthropol ; 166(2): 433-441, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29484643

RESUMO

OBJECTIVES: When closely related species overlap geographically, selection may favor species-specific mate recognition traits to avoid hybridization costs. Conversely, the need to recognize potential same-sex rivals may select for lower specificity, creating the possibility that selection in one domain constrains evolution in the other. Despite a wealth of data on mate recognition, studies addressing rival recognition between hybridizing species are limited to a few bird species. Using naïve populations, we examine the extent to which failed rival recognition might have affected hybridization patterns when two species of howler monkeys (Alouatta pigra and A. palliata) first met after diverging in allopatry. METHODS: We simulated first contact between naïve subjects using playback experiments in allopatric populations of the two purebred species. Using linear mixed models, we compared their look, move, and vocal responses to conspecific and heterospecific loud calls. RESULTS: Although not different in overall response strength to playbacks, the two species differed in reaction to heterospecific callers. Male A. pigra ignored calls from male A. palliata, but the reverse was not true. DISCUSSION: Despite striking differences in vocalizations, A. palliata respond equally to calls from both species whereas A. pigra respond only to conspecifics. This apparent failure of A. pigra males to recognize interspecific rivals might have biased hybridization (F1 hybrids = male A. palliata x female A. pigra), a pattern previously hypothesized based on genetic analysis of hybrids. Given that A. pigra males could be losing reproductive opportunities to heterospecific males, our findings add to growing evidence of potential costs for overly specific species recognition.


Assuntos
Alouatta/fisiologia , Vocalização Animal/fisiologia , Animais , Antropologia Física , Feminino , Masculino , México , Espectrografia do Som , Especificidade da Espécie
5.
Mycologia ; 109(6): 912-934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29494311

RESUMO

Developing a comprehensive and reliable taxonomy for the Colletotrichum gloeosporioides species complex will require adopting data standards on the basis of an understanding of how methodological choices impact morphological evaluations and phylogenetic inference. We explored the impact of methodological choices in a morphological and molecular evaluation of Colletotrichum species associated with banana in Brazil. The choice of alignment filtering algorithm has a significant impact on topological inference and the retention of phylogenetically informative sites. Similarly, the choice of phylogenetic marker affects the delimitation of species boundaries, particularly if low phylogenetic signal is confounded with strong discordance, and inference of the species tree from multiple-gene trees. According to both phylogenetic informativeness profiling and Bayesian concordance analyses, the most informative loci are DNA lyase (APN2), intergenic spacer (IGS) between DNA lyase and the mating-type locus MAT1-2-1 (APN2/MAT-IGS), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), ß-tubulin (TUB2), and a new marker, the intergenic spacer between GAPDH and an hypothetical protein (GAP2-IGS). Cornmeal agar minimizes the variance in conidial dimensions compared with potato dextrose agar and synthetic nutrient-poor agar, such that species are more readily distinguishable based on phenotypic differences. We apply these insights to investigate the diversity of Colletotrichum species associated with banana anthracnose in Brazil and report C. musae, C. tropicale, C. theobromicola, and C. siamense in association with banana anthracnose. One lineage did not cluster with any previously described species and is described here as C. chrysophilum.


Assuntos
Biodiversidade , Colletotrichum/classificação , Técnicas de Genotipagem/métodos , Técnicas Microbiológicas/métodos , Microscopia/métodos , Musa/microbiologia , Brasil , Colletotrichum/genética , Colletotrichum/isolamento & purificação , Colletotrichum/fisiologia , Proteínas Fúngicas/genética , Genes Fúngicos , Filogenia
6.
Proc Biol Sci ; 282(1804): 20142256, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25740887

RESUMO

Interspecific territoriality occurs when individuals of different species fight over space, and may arise spontaneously when populations of closely related territorial species first come into contact. But defence of space is costly, and unless the benefits of excluding heterospecifics exceed the costs, natural selection should favour divergence in competitor recognition until the species no longer interact aggressively. Ordinarily males of different species do not compete for mates, but when males cannot distinguish females of sympatric species, females may effectively become a shared resource. We model how reproductive interference caused by undiscriminating males can prevent interspecific divergence, or even cause convergence, in traits used to recognize competitors. We then test the model in a genus of visually orienting insects and show that, as predicted by the model, differences between species pairs in the level of reproductive interference, which is causally related to species differences in female coloration, are strongly predictive of the current level of interspecific aggression. Interspecific reproductive interference is very common and we discuss how it may account for the persistence of interspecific aggression in many taxonomic groups.


Assuntos
Evolução Biológica , Odonatos/fisiologia , Seleção Genética , Agressão , Animais , América Central , Cor , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Modelos Biológicos , Dados de Sequência Molecular , América do Norte , Odonatos/genética , Filogenia , Reprodução , Análise de Sequência de DNA , Territorialidade , Percepção Visual
7.
Am J Primatol ; 77(6): 679-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25759142

RESUMO

Divergence in vocalizations can reduce gene flow by serving as a premating barrier during secondary contact between previously isolated populations. In primates, vocal divergence in long calls of separated populations has been documented, yet recognition of these differences by the respective populations has seldom been studied in the field. To investigate this issue, we studied populations of two subspecies of saddle-back tamarins (Saguinus fuscicollis nigrifrons and S. f. lagonotus) that are separated by the Amazon River in Peru. We recorded long calls of each subspecies and detected significant differences between the populations in the number of notes per call, duration of calls, and shifts in starting frequency of notes over the length of calls. In addition, a population of S. f. nigrifrons responded more overtly in measures of approach to playback of long calls of its own subspecies compared to long calls of S. f. lagonotus. These results are consistent with the hypothesis that allopatric divergence of long calls might contribute to reproductive isolation of these subspecies of saddle-back tamarins, which adds to growing evidence suggesting full species status for these taxa.


Assuntos
Percepção Auditiva , Comportamento Animal , Saguinus/fisiologia , Vocalização Animal , Análise de Variância , Animais , Movimento , Peru , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA