Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
J Chromatogr A ; 1730: 465114, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38964160

RESUMO

Protein chromatography is the dominant method of purification of biopharmaceuticals. Although all practical chromatography involves competitive absorption and separation of M. species, competitive protein absorption has remained inadequately understood. We previously introduced the measurement of equilibrium protein adsorption isotherms with all intensive variables held constant, including competitor concentration. In this work, we introduce isocratic chromatographic retention measurements of dynamic protein adsorption in the presence of a constant concentration of a competitor protein. These measurements are achieved by establishing a dynamic equilibrium with a constant concentration of competitor (insulin) in the mobile phase flowing through an ion exchange adsorbent column and following the behavior of a test protein (α-lactalbumin) injected into this environment. We observed decreased retention times for α-lactalbumin in presence of the competitor. The presence of competitor also reduces the heterogeneity of the sites available for adsorption of the test protein. This investigation provides an approach to fundamental understanding of competitive dynamics of multicomponent protein chromatography.

2.
Pediatr Allergy Immunol ; 35(6): e14167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860435

RESUMO

BACKGROUND: Some studies have reported that polyamine levels may influence immune system programming. The aim of this study was to evaluate the polyamine profile during gestation and its associations with maternal allergy and cytokine production in cord blood cells in response to different allergenic stimuli. METHODS: Polyamines were determined in plasma of pregnant women (24 weeks, N = 674) and in umbilical cord samples (N = 353 vein and N = 160 artery) from the Mediterranean NELA birth cohort. Immune cell populations were quantified, and the production of cytokines in response to different allergic and mitogenic stimuli was assessed in cord blood. RESULTS: Spermidine and spermine were the most prevalent polyamines in maternal, cord venous, and cord arterial plasma. Maternal allergies, especially allergic conjunctivitis, were associated with lower spermine in umbilical cord vein. Higher levels of polyamines were associated with higher lymphocyte number but lower Th2-related cells in cord venous blood. Those subjects with higher levels of circulating polyamines in cord showed lower production of inflammatory cytokines, especially IFN-α, and lower production of Th2-related cytokines, mainly IL-4 and IL-5. The effects of polyamines on Th1-related cytokines production were uncertain. CONCLUSIONS: Spermidine and spermine are the predominant polyamines in plasma of pregnant women at mid-pregnancy and also in umbilical cord. Maternal allergic diseases like allergic conjunctivitis are related to lower levels of polyamines in cord vein, which could influence the immune response of the newborn. Cord polyamine content is related to a decreased Th2 response and inflammatory cytokines production, which might be important to reduce an allergenic phenotype in the neonate.


Assuntos
Citocinas , Sangue Fetal , Hipersensibilidade , Poliaminas , Humanos , Feminino , Gravidez , Recém-Nascido , Sangue Fetal/imunologia , Citocinas/sangue , Citocinas/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/sangue , Adulto , Complicações na Gravidez/imunologia , Complicações na Gravidez/sangue , Células Th2/imunologia , Espermidina/sangue
3.
Immunity ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38908373

RESUMO

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.

4.
Biochim Biophys Acta Gen Subj ; 1868(9): 130652, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857773

RESUMO

Mitochondria play a crucial role in maintaining Ca2+ homeostasis in cells. Due to the critical regulatory role of the products of oxidative and non-oxidative metabolism of L-arginine, it is essential to clarify their effect on Ca2+ transport in smooth muscle mitochondria. Experiments were performed on the uterine myocytes of rats and isolated mitochondria. The possibility of NO synthesis by mitochondria was demonstrated by confocal microscopy and spectrofluorimetry methods using the NO-sensitive fluorescent probe DAF-FM and Mitotracker Orange CM-H2TMRos. It was shown that 50 µM L-arginine stimulates the energy-dependent accumulation of Ca2+ in mitochondria using the fluorescent probe Fluo-4 AM. A similar effect occurred when using nitric oxide donors 100 µM SNP, SNAP, and sodium nitrite (SN) directly. The stimulating effect was eliminated in the presence of the NO scavenger C-PTIO. Nitric oxide reduces the electrical potential in mitochondria without causing them to swell. The stimulatory effect of spermine on the accumulation of Ca2+ by mitochondria is attributed to the enhancement of NO synthesis, which was demonstrated with the use of C-PTIO, NO-synthase inhibitors (100 µM NA and L-NAME), as well as by direct monitoring of NO synthesis fluorescent probe DAF-FM. A conclusion was drawn about the potential regulatory effect of the product of the oxidative metabolism of L-arginine - NO on the transport of Ca2+ in the mitochondria of the myometrium, as well as the corresponding effect of the product of non-oxidative metabolism -spermine by increasing the synthesis of NO in these subcellular structures.

5.
Asian J Pharm Sci ; 19(3): 100924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38903130

RESUMO

Polyamine metabolism dysregulation is a hallmark of many cancers, offering a promising avenue for early tumor theranostics. This study presents the development of a nuclear probe derived from spermidine (SPM) for dual-purpose tumor PET imaging and internal radiation therapy. The probe, radiolabeled with either [68Ga]Ga for diagnostic applications or [177Lu]Lu for therapeutic use, was synthesized with exceptional purity, stability, and specific activity. Extensive testing involving 12 different tumor cell lines revealed remarkable specificity towards B16 melanoma cells, showcasing outstanding tumor localization and target-to-non-target ratio. Mechanistic investigations employing polyamines, non-labeled precursor, and polyamine transport system (PTS) inhibitor, consistently affirmed the probe's targetability through recognition of the PTS. Notably, while previous reports indicated PTS upregulation in various tumor types for targeted therapy, this study observed no positive signals, highlighting a concentration-dependent discrepancy between targeting for therapy and diagnosis. Furthermore, when labeled with [177Lu], the probe demonstrated its therapeutic potential by effectively controlling tumor growth and extending mouse survival. Investigations into biodistribution, excretion, and biosafety in healthy humans laid a robust foundation for clinical translation. This study introduces a versatile SPM-based nuclear probe with applications in precise tumor theranostics, offering promising prospects for clinical implementation.

6.
Adv Sci (Weinh) ; : e2306912, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775007

RESUMO

Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-ß1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-ß1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.

7.
Rare ; 22024.
Artigo em Inglês | MEDLINE | ID: mdl-38770537

RESUMO

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder characterized by a collection of clinical features including mild to severe intellectual disability, hypertonia, marfanoid habitus, facial asymmetry, osteoporosis, developmental delay and seizures. Whole genome sequencing (WGS) identified a mutation in the spermine synthase (SMS) gene (c.746 A>G, p.Tyr249Cys) in a male with kyphosis, seizures, and osteoporosis. His phenotype is unique in that he does not have intellectual disability (ID) but does have a mild learning disability. This case demonstrates a milder presentation of SRS and expands the phenotype beyond the reported literature.

8.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791426

RESUMO

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Assuntos
Apoptose , Helianthus , Tubérculos , Poliaminas , Helianthus/metabolismo , Helianthus/crescimento & desenvolvimento , Poliaminas/metabolismo , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento
9.
FEBS J ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808914

RESUMO

Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.

10.
Aging Cell ; : e14227, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798180

RESUMO

Recent studies have demonstrated the remarkable potential of early life intervention strategies at influencing the course of postnatal development, thereby offering exciting possibilities for enhancing longevity and improving overall health. Metformin (MF), an FDA-approved medication for type II diabetes mellitus, has recently gained attention for its promising anti-aging properties, acting as a calorie restriction mimetic, and delaying precocious puberty. Additionally, trodusquemine (MSI-1436), an investigational drug, has been shown to combat obesity and metabolic disorders by inhibiting the enzyme protein tyrosine phosphatase 1b (Ptp1b), consequently reducing hepatic lipogenesis and counteracting insulin and leptin resistance. In this study, we aimed to further explore the effects of these compounds on young, developing mice to uncover biomolecular signatures that are central to liver metabolic processes. We found that MSI-1436 more potently alters mRNA and miRNA expression in the liver compared with MF, with bioinformatic analysis suggesting that cohorts of differentially expressed miRNAs inhibit the action of phosphoinositide 3-kinase (Pi3k), protein kinase B (Akt), and mammalian target of rapamycin (Mtor) to regulate the downstream processes of de novo lipogenesis, fatty acid oxidation, very-low-density lipoprotein transport, and cholesterol biosynthesis and efflux. In summary, our study demonstrates that administering these compounds during the postnatal window metabolically reprograms the liver through induction of potent epigenetic changes in the transcriptome, potentially forestalling the onset of age-related diseases and enhancing longevity. Future studies are necessary to determine the impacts on lifespan and overall quality of life.

11.
mSystems ; 9(5): e0024624, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564708

RESUMO

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.


Assuntos
Arginina , Colo , Microbioma Gastrointestinal , Mucosa Intestinal , Mucinas , Espermina , Espermina/metabolismo , Mucinas/metabolismo , Arginina/metabolismo , Arginina/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Animais , Microbioma Gastrointestinal/fisiologia , Colo/microbiologia , Colo/metabolismo , Masculino , Camundongos , Lactobacillus/metabolismo , Humanos , Fibras na Dieta/metabolismo , Camundongos Endogâmicos C57BL
12.
Tissue Barriers ; : 2347070, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682891

RESUMO

Disruptions in polyamine metabolism have been identified as contributing factors to various central nervous system disorders. Our laboratory has previously highlighted the crucial role of polyamine oxidation in retinal disease models, specifically noting elevated levels of spermine oxidase (SMOX) in inner retinal neurons. Our prior research demonstrated that inhibiting SMOX with MDL 72527 protected against vascular injury and microglial activation induced by hyperoxia in the retina. However, the effects of SMOX inhibition on retinal neovascularization and vascular permeability, along with the underlying molecular mechanisms of vascular protection, remain incompletely understood. In this study, we utilized the oxygen-induced retinopathy (OIR) model to explore the impact of SMOX inhibition on retinal neovascularization, vascular permeability, and the molecular mechanisms underlying MDL 72527-mediated vasoprotection in the OIR retina. Our findings indicate that inhibiting SMOX with MDL 72527 mitigated vaso-obliteration and neovascularization in the OIR retina. Additionally, it reduced OIR-induced vascular permeability and Claudin-5 expression, suppressed acrolein-conjugated protein levels, and downregulated P38/ERK1/2/STAT3 signaling. Furthermore, our results revealed that treatment with BSA-Acrolein conjugates significantly decreased the viability of human retinal endothelial cells (HRECs) and activated P38 signaling. These observations contribute valuable insights into the potential therapeutic benefits of SMOX inhibition by MDL 72527 in ischemic retinopathy.

13.
J Biol Chem ; 300(5): 107281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588807

RESUMO

Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.


Assuntos
Bactérias , Proteínas de Bactérias , Espermidina Sintase , Espermina Sintase , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espermidina/metabolismo , Espermidina/análogos & derivados , Espermidina/biossíntese , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Espermina/metabolismo , Espermina/análogos & derivados , Espermina/biossíntese , Espermina Sintase/metabolismo , Espermina Sintase/genética , Poliaminas/metabolismo , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/genética , Agmatina/química , Agmatina/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473716

RESUMO

Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.


Assuntos
Células-Tronco Mesenquimais , Espermidina , Humanos , Espermidina/metabolismo , Espermina/metabolismo , Espermina Sintase/genética , Ornitina Descarboxilase/metabolismo , Osteogênese , Poliaminas/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro
15.
Biochim Biophys Acta Gen Subj ; 1868(6): 130610, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527572

RESUMO

Polyamines not only play essential roles in cell growth and function of living organisms but are also released into the extracellular space and function as regulators of chemical transduction, although the cells from which they are released and their mode of release are not well understood. The vesicular polyamine transporter (VPAT), encoded by the SLC18B1 is responsible for the vesicular storage of spermine and spermidine, followed by their vesicular release from secretory cells. Focusing on VPAT will help identify polyamine-secreting cells and new polyamine functions. In this study, we investigated the possible involvement of VPAT in vesicular release of polyamines in MEG-01 clonal megakaryoblastic cells and platelets. RT-PCR, western blotting, and immunohistochemistry revealed VPAT expression in MEG-01 cells. MEG-01 cells secreted polyamines upon A23187 stimulation in the presence of Ca2+, which is temperature-dependent and sensitive to bafilomycin A1. A23187-induced polyamine secretion from MEG-01 cells was reduced by treatment with reserpine, VPAT inhibitors, or VPAT RNA interference. Platelets also expressed VPAT, displaying a punctate distribution, and released spermidine upon A23187 and thrombin stimulation. These findings have demonstrated VPAT-mediated vesicular polyamine release from MEG-01 cells, suggesting the presence of similar vesicular polyamine release mechanisms in platelets.


Assuntos
Plaquetas , Poliaminas , Plaquetas/metabolismo , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia , Megacariócitos/metabolismo , Células Progenitoras de Megacariócitos/metabolismo , Células Progenitoras de Megacariócitos/citologia
16.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463005

RESUMO

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Deficiência Intelectual Ligada ao Cromossomo X , Poliaminas , Espermina Sintase , Animais , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Espermina Sintase/metabolismo , Espermina Sintase/genética , Poliaminas/metabolismo , Mitocôndrias/metabolismo , Masculino , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fosforilação Oxidativa , Hipocampo/patologia , Hipocampo/metabolismo , Ansiedade/patologia , Densidade Óssea , Encéfalo/patologia , Encéfalo/metabolismo , Medo , Humanos , Tamanho do Órgão
17.
Front Microbiol ; 15: 1359188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516013

RESUMO

Background: It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale: Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach: To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results: The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion: The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.

18.
Zool Res ; 45(2): 367-380, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485506

RESUMO

Osteoporosis is a prevalent metabolic bone disease. While drug therapy is essential to prevent bone loss in osteoporotic patients, current treatments are limited by side effects and high costs, necessitating the development of more effective and safer targeted therapies. Utilizing a zebrafish ( Danio rerio) larval model of osteoporosis, we explored the influence of the metabolite spermine on bone homeostasis. Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption. Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity. Notably, spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae. At the molecular level, Rac1 was identified as playing a pivotal role in mediating the anti-osteoporotic effects of spermine, with P53 potentially acting downstream of Rac1. These findings were confirmed using mouse ( Mus musculus) models, in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions, suggesting strong potential as a bone-strengthening agent. This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development, highlighting pivotal molecular mediators. Given their efficacy and safety, human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.


Assuntos
Osteoporose , Doenças dos Roedores , Humanos , Camundongos , Animais , Peixe-Zebra , Espermina/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Osteoporose/veterinária , Prednisolona/efeitos adversos , Glucocorticoides , Doenças dos Roedores/induzido quimicamente , Doenças dos Roedores/tratamento farmacológico
19.
Protoplasma ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530427

RESUMO

In plant tissue culture, differences in endogenous levels of species-specific plant growth regulators (PGRs) may explain differences in regenerative capacity. In the case of polyamines (PAs), their dynamics and distribution may vary between species, genotypes, tissues, and developmental pathways, such as sexual reproduction and apomixis. In this study, for the first time, we aimed to assess the impact of varying endogenous PAs levels in seeds from distinct reproductive modes in Miconia spp. (Melastomataceae), on their in vitro regenerative capacity. We quantified the free PAs endogenous content in seeds of Miconia australis (obligate apomictic), Miconia hyemalis (facultative apomictic), and Miconia sellowiana (sexual) and evaluated their in vitro regenerative potential in WPM culture medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The morphogenic responses were characterized by light microscopy and scanning electron microscopy and discussed regarding the endogenous PAs profiles found. Seeds of M. sellowiana presented approximately eight times more putrescine than M. australis, which was associated with a higher percentage of regenerated calluses (76.67%) than M. australis (5.56%). On the other hand, spermine levels were significantly higher in M. australis. Spermine is indicated as an inhibitor of auxin-carrying gene expression, which may have contributed to its lower regenerative capacity under the tested conditions. These findings provide important insights into in vitro morphogenesis mechanisms in Miconia and highlight the significance of endogenous PA levels in plant regeneration. These discoveries can potentially optimize future regeneration protocols in Miconia, a plant group still underexplored in this area.

20.
Methods Mol Biol ; 2765: 209-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381342

RESUMO

Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA. Here, we present a proof of principle for an affordable and efficient RNA-based system for the controlled synthesis of circRNA with a physiological 3',5'-phosphodiester conjunction. The engineered hairpin ribozyme variant circular ribozyme 3 (CRZ-3) performs self-cleavage poorly. We designed an activator-polyamine complex to complete cleavage as a prerequisite for subsequent circularization. The developed protocol allows synthesizing circRNA without external enzymatic assistance and adds a controllable way of circularization to the existing methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...