Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
Skelet Muscle ; 14(1): 16, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026344

RESUMO

BACKGROUND: This study aims to investigate the involvement of acid sphingomyelinase (ASM) in the pathology of dermatomyositis (DM), making it a potential therapeutic target for DM. METHODS: Patients with DM and healthy controls (HCs) were included to assess the serum level and activity of ASM, and to explore the associations between ASM and clinical indicators. Subsequently, a myositis mouse model was established using ASM gene knockout and wild-type mice to study the significant role of ASM in the pathology and to assess the treatment effect of amitriptyline, an ASM inhibitor. Additionally, we investigated the potential treatment mechanism by targeting ASM both in vivo and in vitro. RESULTS: A total of 58 DM patients along with 30 HCs were included. The ASM levels were found to be significantly higher in DM patients compared to HCs, with median (quartile) values of 2.63 (1.80-4.94) ng/mL and 1.64 (1.47-1.96) ng/mL respectively. The activity of ASM in the serum of DM patients was significantly higher than that in HCs. Furthermore, the serum levels of ASM showed correlations with disease activity and muscle enzyme levels. Knockout of ASM or treatment with amitriptyline improved the severity of the disease, rebalanced the CD4 T cell subsets Th17 and Treg, and reduced the production of their secreted cytokines. Subsequent investigations revealed that targeting ASM could regulate the expression of relevant transcription factors and key regulatory proteins. CONCLUSION: ASM is involved in the pathology of DM by regulating the differentiation of naive CD4 + T cells and can be a potential treatment target.


Assuntos
Amitriptilina , Diferenciação Celular , Dermatomiosite , Camundongos Knockout , Esfingomielina Fosfodiesterase , Linfócitos T Reguladores , Células Th17 , Dermatomiosite/tratamento farmacológico , Dermatomiosite/imunologia , Dermatomiosite/genética , Humanos , Animais , Diferenciação Celular/efeitos dos fármacos , Masculino , Feminino , Pessoa de Meia-Idade , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Adulto , Camundongos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 15: 1435701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044828

RESUMO

Ceramides generated by the activity of the neutral sphingomyelinase 2 (nSMase2) play a pivotal role in stress responses in mammalian cells. Dysregulation of sphingolipid metabolism has been implicated in numerous inflammation-related pathologies. However, its influence on inflammatory cytokine-induced signaling is yet incompletely understood. Here, we used proximity labeling to explore the plasma membrane proximal protein network of nSMase2 and TNFα-induced changes thereof. We established Jurkat cells stably expressing nSMase2 C-terminally fused to the engineered ascorbate peroxidase 2 (APEX2). Removal of excess biotin phenol substantially improved streptavidin-based affinity purification of biotinylated proteins. Using our optimized protocol, we determined nSMase2-proximal biotinylated proteins and their changes within the first 5 min of TNFα stimulation by quantitative mass spectrometry. We observed significant dynamic changes in the nSMase2 microenvironment in response to TNFα stimulation consistent with rapid remodeling of protein networks. Our data confirmed known nSMase2 interactors and revealed that the recruitment of most proteins depended on nSMase2 enzymatic activity. We measured significant enrichment of proteins related to vesicle-mediated transport, including proteins of recycling endosomes, trans-Golgi network, and exocytic vesicles in the proximitome of enzymatically active nSMase2 within the first minutes of TNFα stimulation. Hence, the nSMase2 proximal network and its TNFα-induced changes provide a valuable resource for further investigations into the involvement of nSMase2 in the early signaling pathways triggered by TNFα.


Assuntos
Esfingomielina Fosfodiesterase , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Jurkat , Esfingomielina Fosfodiesterase/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo
3.
J Inherit Metab Dis ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992987

RESUMO

Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder (LSD) caused by reduced activity of the acid sphingomyelinase (ASM) enzyme, which leads to progressive storage of sphingomyelin and related lipids in the body. ASMD is caused by biallelic variants in the SMPD1 gene, which encodes for the ASM enzyme. Current estimates of disease incidence range from 0.4 to 0.6 in 100 000 livebirths, although this is likely an underestimation of the true frequency of the disorder. While there is no cure for ASMD, comprehensive care guidelines and enzyme replacement therapy are available, making an early diagnosis crucial. Newborn screening (NBS) for ASMD is possible through measurement of ASM activity in dried blood spots and offers the opportunity for early diagnosis. In 2015, Illinois (IL) became the first to initiate statewide implementation of NBS for ASMD. This study describes the outcomes of screen-positive patients referred to Ann & Robert H. Lurie Children's Hospital (Lurie). Ten infants were referred for diagnostic evaluation at Lurie, and all 10 infants were classified as confirmed ASMD or at risk for ASMD through a combination of molecular and biochemical testing. Disease incidence was calculated using data from this statewide implementation program and was ~0.79 in 100 000 livebirths. This study demonstrates successful implementation of NBS for ASMD in IL, with high screen specificity and a notable absence of false positive screens.

4.
J Agric Food Chem ; 72(29): 16177-16190, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991150

RESUMO

Rituximab (RTX) resistance is a notable challenge in treating diffuse large B-cell lymphoma (DLBCL). ß-Sitosterol (ß-ST) is a plant sterol that has been found in a broad variety of fruits, spices, and medicinal plants. The antineoplastic properties of ß-ST are established in various solid malignancies; however, its effect on DLBCL is uncharted. This study investigates the role of ß-ST in DLBCL as well as the underlying mechanisms. Our findings indicated that ß-ST impeded DLBCL cell proliferation in a concentration- and time-dependent manner. ß-ST appeared to alter sphingolipid metabolism, facilitate acid sphingomyelinase (ASM) translocation to the plasma membrane, augment ceramide platforms through increased ceramide synthesis, and consequently induce apoptosis in DLBCL cells. Furthermore, we found that RTX initiated both apoptotic and survival pathways in vitro, with the former contingent on the transient activation of the ASM, and ß-ST could amplify the anti-DLBCL efficacy of RTX by modulating ASM/Ceramide (Cer) signaling. Collectively, our findings elucidate the mechanistic role of ß-ST in DLBCL and underscore its potential in amplifying the antineoplastic efficacy of RTX via ASM activation, proposing a potential avenue to improve the efficacy of RTX therapy.


Assuntos
Apoptose , Proliferação de Células , Ceramidas , Linfoma Difuso de Grandes Células B , Rituximab , Transdução de Sinais , Sitosteroides , Esfingomielina Fosfodiesterase , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/genética , Humanos , Ceramidas/metabolismo , Ceramidas/farmacologia , Sitosteroides/farmacologia , Rituximab/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
5.
Comput Struct Biotechnol J ; 23: 2516-2533, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974886

RESUMO

Lysosomes are pivotal in cellular functions and disease, influencing cancer progression and therapy resistance with Acid Sphingomyelinase (ASM) governing their membrane integrity. Moreover, cation amphiphilic drugs (CADs) are known as ASM inhibitors and have anti-cancer activity, but the structural mechanisms of their interactions with the lysosomal membrane and ASM are poorly explored. Our study, leveraging all-atom explicit solvent molecular dynamics simulations, delves into the interaction of glycosylated ASM with the lysosomal membrane and the effects of CAD representatives, i.e., ebastine, hydroxyebastine and loratadine, on the membrane and ASM. Our results confirm the ASM association to the membrane through the saposin domain, previously only shown with coarse-grained models. Furthermore, we elucidated the role of specific residues and ASM-induced membrane curvature in lipid recruitment and orientation. CADs also interfere with the association of ASM with the membrane at the level of a loop in the catalytic domain engaging in membrane interactions. Our computational approach, applicable to various CADs or membrane compositions, provides insights into ASM and CAD interaction with the membrane, offering a valuable tool for future studies.

6.
Lipids Health Dis ; 23(1): 200, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937745

RESUMO

BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.


Assuntos
Encéfalo , Ceramidas , Esfingolipídeos , Esfingomielina Fosfodiesterase , Esfingosina , Animais , Camundongos , Esfingolipídeos/sangue , Esfingolipídeos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ceramidas/sangue , Ceramidas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/metabolismo , Modelos Animais de Doenças , Masculino , Esfingomielinas/sangue , Esfingomielinas/metabolismo , Concussão Encefálica/sangue , Concussão Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/patologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo
7.
Diagnostics (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928715

RESUMO

The liver, given its role as the central metabolic organ, is involved in many inherited metabolic disorders, including lysosomal storage diseases (LSDs). The aim of this manuscript was to provide a comprehensive overview on liver involvement in LSDs, focusing on clinical manifestation and its pathomechanisms. Gaucher disease, acid sphingomyelinase deficiency, and lysosomal acid lipase deficiency were thoroughly reviewed, with hepatic manifestation being a dominant clinical phenotype. The natural history of liver disease in the above-mentioned lysosomal disorders was delineated. The importance of Niemann-Pick type C disease as a cause of cholestatic jaundice, preceding neurological manifestation, was also highlighted. Diagnostic methods and current therapeutic management of LSDs were also discussed in the context of liver involvement.

8.
Children (Basel) ; 11(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929247

RESUMO

Pulmonologists may be involved in managing pulmonary diseases in children with complex clinical pictures without a diagnosis. Moreover, they are routinely involved in the multidisciplinary care of children with rare diseases, at baseline and during follow-up, for lung function monitoring. Lysosomal storage diseases (LSDs) are a group of genetic diseases characterised by a specific lysosomal enzyme deficiency. Despite varying pathogen and organ involvement, they are linked by the pathological accumulation of exceeding substrates, leading to cellular toxicity and subsequent organ damage. Less severe forms of LSDs can manifest during childhood or later in life, sometimes being underdiagnosed. Respiratory impairment may stem from different pathogenetic mechanisms, depending on substrate storage in bones, with skeletal deformity and restrictive pattern, in bronchi, with obstructive pattern, in lung interstitium, with altered alveolar gas exchange, and in muscles, with hypotonia. This narrative review aims to outline different pulmonary clinical findings and a diagnostic approach based on key elements for differential diagnosis in some treatable LSDs like Gaucher disease, Acid Sphingomyelinase deficiency, Pompe disease and Mucopolysaccharidosis. Alongside their respiratory clinical aspects, which might overlap, we will describe radiological findings, lung functional patterns and associated symptoms to guide pediatric pulmonologists in differential diagnosis. The second part of the paper will address follow-up and management specifics. Recent evidence suggests that new therapeutic strategies play a substantial role in preventing lung involvement in early-treated patients and enhancing lung function and radiological signs in others. Timely diagnosis, driven by clinical suspicion and diagnostic workup, can help in treating LSDs effectively.

9.
Eur J Med Genet ; 70: 104954, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852770

RESUMO

Acid sphingomyelinase deficiency (ASMD) is a rare, lysosomal storage disease with limited evidence on its natural history. This retrospective, medical record abstraction study aimed to characterize the natural history of ASMD (types B and A/B) during childhood and adolescence. Recruiting sites were European centers (i.e., France, Germany, Italy, and the United Kingdom) from the ASCEND-Peds trial (NCT02292654); these sites were targeted because of the rarity of ASMD and specialized care provided at these centers. The study population comprised ASMD trial patients (before exposure to treatment) and ASMD non-trial participants who were managed at the same trial sites. Overall, 18 patients were included (11 trials; 7 non-trials; median [Q1; Q3] age at ASMD diagnosis: 2.5 [1.0; 4.0] years). Median follow-up duration was 10.0 years. Frequently reported medical conditions were hepatobiliary (17 [94.4%]) and blood and lymphatic system disorders (16 [88.9%]). Adenoidectomy (3 [16.7%]) was the most commonly reported surgical procedure; gastroenteritis (5 [27.8%]) was the most frequently reported infection, and epistaxis (6 [33.3%]) was the most commonly reported bleeding event. Abnormal spleen (16 [88.9%]) and liver (15 [83.3%]) size and respiratory function (8 [44.4%]) were commonly reported during physical examination. Overall, 11 (61.1%) patients were hospitalized; 6 (33.3%) patients had emergency room visits. Findings were consistent with published literature and support the current understanding of natural history of ASMD.

10.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167260, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782304

RESUMO

Lysosomal acid sphingomyelinase (ASM), a critical enzyme in lipid metabolism encoded by the SMPD1 gene, plays a crucial role in sphingomyelin hydrolysis in lysosomes. ASM deficiency leads to acid sphingomyelinase deficiency, a rare genetic disorder with diverse clinical manifestations, and the protein can be found mutated in other diseases. We employed a structure-based framework to comprehensively understand the functional implications of ASM variants, integrating pathogenicity predictions with molecular insights derived from a molecular dynamics simulation in a lysosomal membrane environment. Our analysis, encompassing over 400 variants, establishes a structural atlas of missense variants of lysosomal ASM, associating mechanistic indicators with pathogenic potential. Our study highlights variants that influence structural stability or exert local and long-range effects at functional sites. To validate our predictions, we compared them to available experimental data on residual catalytic activity in 135 ASM variants. Notably, our findings also suggest applications of the resulting data for identifying cases suited for enzyme replacement therapy. This comprehensive approach enhances the understanding of ASM variants and provides valuable insights for potential therapeutic interventions.

11.
Cell Metab ; 36(7): 1521-1533.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38718792

RESUMO

Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1ß induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.


Assuntos
Ceramidas , Retinopatia Diabética , Imunoterapia , Ceramidas/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/imunologia , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Retina/metabolismo , Retina/patologia , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Ratos , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Corpo Vítreo/metabolismo , Feminino , Camundongos Knockout
12.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Humanos , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , beta-Ciclodextrinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células CHO , Colesterol/metabolismo , Cricetulus , Modelos Animais de Doenças , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Pregnenolona/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Pirimidinonas/farmacologia
13.
Neuropharmacology ; 253: 109948, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636728

RESUMO

Alcohol consumption is a widespread phenomenon throughout the world. However, how recreational alcohol use evolves into alcohol use disorder (AUD) remains poorly understood. The Smpd3 gene and its coded protein neutral sphingomyelinase (NSM) are associated with alcohol consumption in humans and alcohol-related behaviors in mice, suggesting a potential role in this transition. Using multiparametric magnetic resonance imaging, we characterized the role of NSM in acute and chronic effects of alcohol on brain anatomy and function in female mice. Chronic voluntary alcohol consumption (16 vol% for at least 6 days) affected brain anatomy in WT mice, reducing regional structure volume predominantly in cortical regions. Attenuated NSM activity prevented these anatomical changes. Functional MRI linked these anatomical adaptations to functional changes: Chronic alcohol consumption in mice significantly modulated resting state functional connectivity (RS FC) in response to an acute ethanol challenge (i.p. bolus of 2 g kg-1) in heterozygous NSM knockout (Fro), but not in WT mice. Acute ethanol administration in alcohol-naïve WT mice significantly decreased RS FC in cortical and brainstem regions, a key finding that was amplified in Fro mice. Regarding direct pharmacological effects, acute ethanol administration increased the regional cerebral blood volume (rCBV) in many brain areas. Here, chronic alcohol consumption otherwise attenuated the acute rCBV response in WT mice but enhanced it in Fro mice. Altogether, these findings suggest a differential role for NSM in acute and chronic functional brain responses to alcohol. Therefore, targeting NSM may be useful in the prevention or treatment of AUD.


Assuntos
Encéfalo , Etanol , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase , Animais , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/genética , Feminino , Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Etanol/administração & dosagem , Camundongos , Consumo de Bebidas Alcoólicas , Depressores do Sistema Nervoso Central/farmacologia , Alcoolismo
14.
J Clin Med ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38592326

RESUMO

Background: Gaucher disease is a lysosomal storage disorder caused by functional glucocerebrosidase enzyme deficiency. Hepatosplenomegaly and hematological complications are found in both Gaucher disease and Acid Sphingomyelinase Deficiency, which is caused by acid sphingomyelinase dysfunction. The possible overlap in clinical presentation can cause diagnostic errors in differential diagnosis. For this reason, in patients with an initial clinical suspicion of Gaucher disease, we aimed to carry out a parallel screening of acid sphingomyelinase and glucocerebrosidase. Methods: Peripheral blood samples of 627 patients were collected, and enzymatic activity analysis was performed on both glucocerebrosidase and acid sphingomyelinase. The specific gene was studied in samples with null or reduced enzymatic activity. Specific molecular biomarkers helped to achieve the correct diagnosis. Results: In 98.7% of patients, normal values of glucocerebrosidase activity excluded Gaucher disease. In 8 of 627 patients (1.3%), the glucocerebrosidase enzymatic activity assay was below the normal range, so genetic GBA1 analysis confirmed the enzymatic defect. Three patients (0.5%) had normal glucocerebrosidase activity, so they were not affected by Gaucher disease, and showed decreased acid sphingomyelinase activity. SMPD1 gene mutations responsible for Acid Sphingomyelinase Deficiency were found. The levels of specific biomarkers found in these patients further strengthened the genetic data. Conclusions: Our results suggest that in the presence of typical signs and symptoms of Gaucher disease, Acid Sphingomyelinase Deficiency should be considered. For this reason, the presence of hepatosplenomegaly, thrombocytopenia, leukocytopenia, and anemia should alert clinicians to analyze both enzymes by a combined screening. Today, enzyme replacement therapy is available for the treatment of both pathologies; therefore, prompt diagnosis is essential for patients to start accurate treatment and to avoid diagnostic delay.

15.
Am J Physiol Renal Physiol ; 326(6): F988-F1003, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634138

RESUMO

Acid sphingomyelinase (ASM) has been reported to increase tissue ceramide and thereby mediate hyperhomocysteinemia (hHcy)-induced glomerular nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation, inflammation, and sclerosis. In the present study, we tested whether somatic podocyte-specific silencing of Smpd1 gene (mouse ASM gene code) attenuates hHcy-induced NLRP3 inflammasome activation and associated extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. In vivo, somatic podocyte-specific Smpd1 gene silencing almost blocked hHcy-induced glomerular NLRP3 inflammasome activation in Podocre (podocyte-specific expression of cre recombinase) mice compared with control littermates. By nanoparticle tracking analysis (NTA), floxed Smpd1 shRNA transfection was found to abrogate hHcy-induced elevation of urinary EV excretion in Podocre mice. In addition, Smpd1 gene silencing in podocytes prevented hHcy-induced immune cell infiltration into glomeruli, proteinuria, and glomerular sclerosis in Podocre mice. Such protective effects of podocyte-specific Smpd1 gene silencing were mimicked by global knockout of Smpd1 gene in Smpd1-/- mice. On the contrary, podocyte-specific Smpd1 gene overexpression exaggerated hHcy-induced glomerular pathological changes in Smpd1trg/Podocre (podocyte-specific Smpd1 gene overexpression) mice, which were significantly attenuated by transfection of floxed Smpd1 shRNA. In cell studies, we also confirmed that Smpd1 gene knockout or silencing prevented homocysteine (Hcy)-induced elevation of EV release in the primary cultures of podocyte isolated from Smpd1-/- mice or podocytes of Podocre mice transfected with floxed Smpd1 shRNA compared with WT/WT podocytes. Smpd1 gene overexpression amplified Hcy-induced EV secretion from podocytes of Smpd1trg/Podocre mice, which was remarkably attenuated by transfection of floxed Smpd1 shRNA. Mechanistically, Hcy-induced elevation of EV release from podocytes was blocked by ASM inhibitor (amitriptyline, AMI), but not by NLRP3 inflammasome inhibitors (MCC950 and glycyrrhizin, GLY). Super-resolution microscopy also showed that ASM inhibitor, but not NLRP3 inflammasome inhibitors, prevented the inhibition of lysosome-multivesicular body interaction by Hcy in podocytes. Moreover, we found that podocyte-derived inflammatory EVs (released from podocytes treated with Hcy) induced podocyte injury, which was exaggerated by T cell coculture. Interstitial infusion of inflammatory EVs into renal cortex induced glomerular injury and immune cell infiltration. In conclusion, our findings suggest that ASM in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy and that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effect.NEW & NOTEWORTHY In the present study, we tested whether podocyte-specific silencing of Smpd1 gene attenuates hyperhomocysteinemia (hHcy)-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and associated inflammatory extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. Our findings suggest that acid sphingomyelinase (ASM) in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy. Based on our findings, it is anticipated that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effects.


Assuntos
Hiper-Homocisteinemia , Inflamassomos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Podócitos , Esfingomielina Fosfodiesterase , Animais , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Inflamassomos/metabolismo , Inflamassomos/genética , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/metabolismo , Glomerulonefrite/genética , Inativação Gênica , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Extracelulares/metabolismo , Masculino , Modelos Animais de Doenças
16.
Int Immunopharmacol ; 133: 112083, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648714

RESUMO

Japanese encephalitis virus (JEV) infection is considered a global public health emergency. Severe peripheral neuropathy caused by JEV infection has increased disability and mortality rates in recent years. Because there are very few therapeutic options for JEV infection, prompt investigations of the ability of clinically safe, efficacious and globally available drugs to inhibit JEV infection and ameliorate peripheral neuropathy are urgently needed. In this study, we found that high doses of intravenous immunoglobulin, a function inhibitor of acid sphingomyelinase (FIASMA), inhibited acid sphingomyelinase (ASM) and ceramide activity in the serum and sciatic nerve of JEV-infected rats, reduced disease severity, reversed electrophysiological and histological abnormalities, significantly reduced circulating proinflammatory cytokine levels, inhibited Th1 and Th17 cell proliferation, and suppressed the infiltration of inflammatory CD4 + cells into the sciatic nerve. It also maintained the peripheral nerve-blood barrier without causing severe clinical side effects. In terms of the potential mechanisms, ASM was found to participate in immune cell differentiation and to activate immune cells, thereby exerting proinflammatory effects. Therefore, immunoglobulin is a FIASMA that reduces abnormal immune responses and thus targets the ASM/ceramide system to treat peripheral neuropathy caused by JEV infection.


Assuntos
Ceramidas , Encefalite Japonesa , Imunoglobulinas Intravenosas , Doenças do Sistema Nervoso Periférico , Esfingomielina Fosfodiesterase , Animais , Humanos , Masculino , Ratos , Ceramidas/metabolismo , Citocinas/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas Intravenosas/farmacologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/virologia , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Transdução de Sinais/efeitos dos fármacos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Células Th1/imunologia , Células Th17/imunologia
17.
Orphanet J Rare Dis ; 19(1): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615062

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) is a rare, progressive, potentially fatal lysosomal storage disease that exhibits a broad spectrum of clinical phenotypes. There is a need to expand the knowledge of disease mortality and morbidity in Germany because of limited information on survival analysis in patients with chronic ASMD (type B or type A/B). METHODS: This observational, multicentre, retrospective cohort study was conducted using medical records of patients with the first symptom onset/diagnosis of ASMD type B or type A/B between 1st January 1990 and 31st July 2021 from four German medical centres. Eligible medical records were abstracted to collect data on demographic characteristics, medical history, hospitalisation, mortality, and causes of death from disease onset to the last follow-up/death. Survival outcomes were estimated using the Kaplan-Meier analysis. Standardised mortality ratio (SMR) was also explored. RESULTS: This study included 33 chart records of patients with ASMD type B (n = 24) and type A/B (n = 9), with a median (interquartile range [IQR]) age of 8.0 [3.0-20.0] years and 1.0 [1.0-2.0] years, respectively, at diagnosis. The commonly reported manifestations were related to spleen (100.0%), liver (93.9%), and respiratory (77.4%) abnormalities. Nine deaths were reported at a median [IQR] age of 17.0 [5.0-25.0] years, with 66.7% of overall patients deceased at less than 18 years of age; the median [IQR] age at death for patients with ASMD type B (n = 4) and type A/B (n = 5) was 31.0 [11.0-55.0] and 9.0 [4.0-18.0] years, respectively. All deaths were ASMD-related and primarily caused by liver or respiratory failures or severe progressive neurodegeneration (two patients with ASMD type A/B). The median (95% confidence interval [CI]) overall survival age since birth was 45.4 (17.5-65.0) years. Additionally, an SMR [95% CI] analysis (21.6 [9.8-38.0]) showed that age-specific deaths in the ASMD population were 21.6 times more frequent than that in the general German population. CONCLUSIONS: This study highlights considerable morbidity and mortality associated with ASMD type B and type A/B in Germany. It further emphasises the importance of effective therapy for chronic ASMD to reduce disease complications.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Adolescente , Adulto , Criança , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Alemanha/epidemiologia , Morbidade , Doença de Niemann-Pick Tipo A/epidemiologia , Doença de Niemann-Pick Tipo A/genética , Doenças de Niemann-Pick/epidemiologia , Doenças de Niemann-Pick/genética , Estudos Retrospectivos
18.
Cureus ; 16(3): e55883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595885

RESUMO

Niemann-Pick disease (NPD) encompasses a minimum of three lysosomal storage diseases, all of which are inherited in an autosomal recessive manner. Acid sphingomyelinase (ASM) deficiency is the cause of NPD types A and B. ASM is the enzyme that hydrolyzes the sphingolipid sphingomyelin. An 18-month-old patient with progressive painless abdominal distension with organomegaly and neurological deficits presented to our hospital. Brain imaging and laboratory findings did not show anything, but there was a millstone growth delay. The diagnosis of NPD type A was confirmed by a genetic examination, which revealed a twofold change on chromosome 11p15.4 in the region encoding the sphingomyelin phosphodiesterase-1 (SMPD1) gene. The patient was followed up with no specific treatment, and signs of respiratory infections were later reported.

19.
World J Gastroenterol ; 30(10): 1405-1419, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596488

RESUMO

BACKGROUND: Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear. AIM: To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium (DSS)-induced colitis. METHODS: Mice were administered 3% DSS drinking water, and disease activity index was determined to evaluate the status of colitis. Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran, and bacterial translocation was evaluated by measuring serum lipopolysaccharide. Intestinal epithelial cell ultrastructure was observed by electron microscopy. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA, respectively. Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels. RESULTS: Compared to wild-type (WT) mice, inflammation and intestinal permeability in alk-SMase knockout (KO) mice were more severe beginning 4 d after DSS induction. The mRNA and protein levels of intestinal barrier proteins, including zonula occludens-1, occludin, claudin-3, claudin-5, claudin-8, mucin 2, and secretory immunoglobulin A, were significantly reduced on 4 d after DSS treatment. Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells. Furthermore, by day 4, mitochondria appeared swollen and degenerated. Additionally, compared to WT mice, serum malondialdehyde levels in KO mice were higher, and the antioxidant capacity was significantly lower. The expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment. mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased. Finally, colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone, which is an Nrf2 activator. CONCLUSION: Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.


Assuntos
Colite Ulcerativa , Colite , Doença de Niemann-Pick Tipo A , Animais , Camundongos , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colite/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo
20.
Curr Issues Mol Biol ; 46(3): 2444-2455, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534770

RESUMO

Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...