Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791320

RESUMO

Nuclear speckles are compartments enriched in splicing factors present in the nucleoplasm of eucaryote cells. Speckles have been studied in mammalian culture and tissue cells, as well as in some non-mammalian vertebrate cells and invertebrate oocytes. In mammals, their morphology is linked to the transcriptional and splicing activities of the cell through a recruitment mechanism. In rats, speckle morphology depends on the hormonal cycle. In the present work, we explore whether a similar situation is also present in non-mammalian cells during the reproductive cycle. We studied the speckled pattern in several tissues of a viviparous reptile, the lizard Sceloporus torquatus, during two different stages of reproduction. We used immunofluorescence staining against splicing factors in hepatocytes and oviduct epithelium cells and fluorescence and confocal microscopy, as well as ultrastructural immunolocalization and EDTA contrast in Transmission Electron Microscopy. The distribution of splicing factors in the nucleoplasm of oviductal cells and hepatocytes coincides with the nuclear-speckled pattern described in mammals. Ultrastructurally, those cell types display Interchromatin Granule Clusters and Perichromatin Fibers. In addition, the morphology of speckles varies in oviduct cells at the two stages of the reproductive cycle analyzed, paralleling the phenomenon observed in the rat. The results show that the morphology of speckles in reptile cells depends upon the reproductive stage as it occurs in mammals.


Assuntos
Núcleo Celular , Hepatócitos , Lagartos , Animais , Feminino , Lagartos/anatomia & histologia , Lagartos/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/citologia , Viviparidade não Mamífera/fisiologia , Oviductos/metabolismo , Oviductos/ultraestrutura , Oviductos/citologia
3.
Front Cell Infect Microbiol ; 11: 718028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737973

RESUMO

Host manipulation is a common strategy for invading pathogens. Trypanosoma cruzi, the causative agent of Chagas Disease, lives intracellularly within host cells. During infection, parasite-associated modifications occur to the host cell metabolism and morphology. However, little is known about the effect of T. cruzi infection on the host cell nucleus and nuclear functionality. Here, we show that T. cruzi can modulate host transcription and splicing machinery in non-professional phagocytic cells during infection. We found that T. cruzi regulates host RNA polymerase II (RNAPII) in a time-dependent manner, resulting in a drastic decrease in RNAPII activity. Furthermore, host cell ribonucleoproteins associated with mRNA transcription (hnRNPA1 and AB2) are downregulated concurrently. We reasoned that T. cruzi may hijack the host U2AF35 auxiliary factor, a key regulator for RNA processing, as a strategy to affect the splicing machinery activities directly. In support of our hypothesis, we carried out in vivo splicing assays using an adenovirus E1A pre-mRNA splicing reporter, showing that intracellular T. cruzi directly modulates the host cells by appropriating U2AF35. For the first time, our results provide evidence of a complex and intimate molecular relationship between T. cruzi and the host cell nucleus during infection.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Núcleo Celular , Transcrição Gênica , Trypanosoma cruzi/genética
4.
Plant J ; 103(2): 889-902, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314836

RESUMO

The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.


Assuntos
Processamento Alternativo , Arabidopsis/metabolismo , Ritmo Circadiano , Perfilação da Expressão Gênica , Processamento Alternativo/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Genes de Plantas/genética , Transcriptoma
5.
Bioessays ; 39(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452057

RESUMO

Alternative splicing (AS) greatly expands the coding capacities of genomes by allowing the generation of multiple mature mRNAs from a limited number of genes. Although the massive switch in AS profiles that often accompanies variations in gene expression patterns occurring during cell differentiation has been characterized for a variety of models, their causes and mechanisms remain largely unknown. Here, we integrate foundational and recent studies indicating the AS switches that govern the processes of cell fate determination. We include some distinct AS events in pluripotent cells and somatic reprogramming and discuss new progresses on alternative isoform expression in adipogenesis, myogenic differentiation and stimulation of immune cells. Finally, we cover novel insights on AS mechanisms during neuronal differentiation, paying special attention to the role of chromatin structure.


Assuntos
Processamento Alternativo , Diferenciação Celular/genética , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA