Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138763

RESUMO

Superhydrophobic coatings have increasingly become the focal point of research due to their distinctive properties like water resistance, wear resistance, and acid-base resilience. In pursuit of maximizing their efficiency, research has primarily revolved around refining the fabrication process and the composition of emulsion/nanoparticle coatings. We innovatively devised a superhydrophobic coating by employing a spraying technique. This involved integrating a γ-Methacryloyloxypropyltrimethoxysilane (KH570)-modified ZrO2/SiO2/silicone-modified acrylic emulsion. A comprehensive evaluation of this coating was undertaken using analytical instruments such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and confocal laser scanning microscopy (CLSM). The coating demonstrated exceptional performance across a range of tests, including wear, immersion, and anti-icing cleaning, showcasing notable wear resistance, sodium chloride corrosion resistance, self-cleaning efficiency, and thermal stability. In particular, one coating exhibited super-hydrophobic properties, with a high contact angle of 158.5 degrees and an impressively low rolling angle of 1.85 degrees. This remarkable combination of properties is attributed to the judicious selection of components, which significantly reinforced the mechanical strength of the coating. These enhancements make it highly suitable for industrial applications where self-cleaning, anti-icing, and anti-contamination capabilities are critical.

2.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959745

RESUMO

In this report, the morphological, optical, electrical, and photovoltaic properties of copper oxide and calcium-doped copper oxide thin films produced via the spray coating method were studied. The thermal post treatment at 300 °C in an inert atmosphere allowed us to obtain a single phase of Cu2O with 21 Ωcm of resistivity (ρ). In this study, 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%, and 10 wt% Ca admixtures with copper oxide were investigated. The determined optimal calcium dopant concentration was 4 wt%. XRD analysis was used to reveal the chemical composition of the produced layers. It was found that a calcium dopant does not change the layer composition but improves its electrical parameters. Based on UV-Vis spectra, the band gap energy and Urbach energy were calculated. The morphology of produced thin films was described as smooth and nanocrystalline, corresponding to a grain size calculated based on the Scherrer equation. Finally, it was shown that the developed protocol of low-resistivity copper oxide deposition via the spray coating technique can be successfully implemented in heterojunction solar cell production. The I-V parameters of Ag/n-type CzSi/REF:CuOx and 4Ca:CuOx/Carbon were collected, and the achieved efficiency was 2.38%.

3.
Journal of Medical Biomechanics ; (6): E135-E141, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-987926

RESUMO

Objective To investigate the effect of different coating methods on production quality of complex and flexible silicone vascular replicas. Methods Based on models of anterior communicating artery aneurysms, several patient-specific models were made by using spray-coating method and brush-spin-coating method respectively, and two methods for making the same vascular structure were quantitatively compared in terms of thickness growth, circumferential uniformity and light transmittance. Results Brush-spin-coating method was better than spray-coating method in the thickness control and coating uniformity for fabrication of vessels with large curvature, variable diameter and straight tube, and the model had preferably light transmittance and surface smoothness. The relative deviation of thickness by brush-spin-coating method was decreased by 8. 9% , 10. 8% and 16. 9% respectively compared with spray-coating method. Conclusions At present stage, the brush-spin coating method has the advantage of thickness uniformity and light transmittance over the spray-coating method in making silicone phantoms, and it has promising application prospects in fluid mechanics field of in vitro experiment on large vessels.

4.
Pharm Dev Technol ; 22(3): 302-311, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26794727

RESUMO

Rapid advancement in the field of colloidal science has shown a great progress in the development of proniosome technology (PT) as an impending drug delivery system. PT is a valuable carrier system for delivery of hydrophobic as well as hydrophilic drugs. It is a liquid crystalline compact niosomal hybrid, which upon hydration gives niosomes. They can augment the bioavailability of encapsulated drug and provide better therapeutic activity in a controlled manner. Non-toxicity, penetration enhancing the effect of surfactant and modified drug release from the proniosomal transdermal gel has attracted a greater attention of formulation scientist toward PT. Free flowing dry proniosomal powder are suitable for unit dosage forms such as tablet and capsules. Proniosomes are auspicious drug delivery system for the future. Proniosomes-derived niosomes are a better alternative to the other vesicular system due to their superior physicochemical stability and effective drug delivery capability. The focus of this review is to bring out all the aspects of proniosomes including their different compositions, various methods of preparation, characterization and recent development in their therapeutic applications.


Assuntos
Composição de Medicamentos/métodos , Géis/química , Lipossomos/química , Preparações Farmacêuticas/administração & dosagem , Administração Cutânea , Administração por Inalação , Administração Oral , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipossomos/administração & dosagem , Propriedades de Superfície
5.
Materials (Basel) ; 7(1): 206-217, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28788451

RESUMO

In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...