Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Foods ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37431019

RESUMO

Quinoa is an Andean grain, classified as pseudocereal and the exploitation of its nutritional profile is of great interest for the cereal-based industry. The germination of quinoa seeds (white and red royal) was tested at 20 °C for different times (0, 18, 24 and 48 h) to select the best conditions for improving the nutritional quality of their flours. Changes in proximal composition, total phenolic compounds, antioxidant activity, mineral content, unsaturated fatty acids and essential amino acids profiles of germinated quinoa seeds were determined. In addition, changes in structure and thermal properties of the starch and proteins as consequence of germination process were analyzed. In white quinoa, germination produced an increase in the content of lipids and total dietary fiber, at 48 h, the levels of linoleic and α-linolenic acids and antioxidant activity increase, while in red quinoa, the component that was mostly increased was total dietary fiber and, at 24 h, increased the levels of oleic and α-linolenic acids, essential amino acids (Lys, His and Met) and phenolic compounds; in addition, a decrease in the amount of sodium was detected. On the basis of the best nutritional composition, 48 h and 24 h of germination were selected for white and red quinoa seeds, respectively. Two protein bands were mostly observed at 66 kDa and 58 kDa, being in higher proportion in the sprouts. Changes in macrocomponents conformation and thermal properties were observed after germination. Germination was more positive in nutritional improvement of white quinoa, while the macromolecules (proteins and starch) of red quinoa presented greater structural changes. Therefore, germination of both quinoa seeds (48 h-white quinoa and 24 h-red quinoa) improves the nutritional value of flours producing the structural changes of proteins and starch necessary for obtaining high quality breads.

2.
Ciênc. rural (Online) ; 52(4): e20210050, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1339681

RESUMO

Biosynthesis is the only source of potato starch which is an important raw material for food processing, modified starch and biomass energy. However, it is not clear about the evolution of starch synthesis with tuber development in potato. The present study evaluated the differences of starch synthesis and gelatinization properties of potato tubers with different starch content. Relative to cultivars of medium and low starch content, cultivars of high starch content showed significantly higher SBEII gene expression, AGPase and SSS enzyme activity, and total starch content after middle stage of starch accumulation, and had smaller average starch granule size during whole process of tuber development, and had higher pasting temperature before late stages of tuber growth, and had lower pasting temperature after middle stage of starch accumulation. Path analysis showed that, after middle stage of starch accumulation, effects on starch gelatinization of cultivars with high, medium and low starch content represented starch synthesis enzyme activity > starch accumulation > starch granule distribution > starch synthesis enzyme gene expression, starch synthesis enzyme gene expression > starch synthesis enzyme activity > starch accumulation > starch granule distribution, starch synthesis enzyme gene expression > starch granule distribution > starch synthesis enzyme activity > starch accumulation, respectively. In the study, phases existed in the starch biosynthesis of potato tuber, and the starch quality and its formation process were different among varieties with different starch content. The findings might contribute to starch application and potato industries.


A biossíntese é a única fonte de amido de batata que é uma importante matéria-prima para o processamento de alimentos, amido modificado e energia de biomassa. No entanto, não está claro sobre a evolução da síntese do amido com o desenvolvimento do tubérculo na batata. O presente estudo teve como objetivo avaliar as diferenças nas propriedades de síntese e gelatinização do amido de tubérculos de batata com diferentes teores de amido. Em relação às cultivares de médio e baixo teor de amido, as cultivares de alto teor de amido apresentaram expressão do gene SBEII, atividade enzimática AGPase e SSS e teor de amido total significativamente maiores após o estágio intermediário de acúmulo de amido, bem como menor tamanho médio dos grânulos de amido durante todo o processo de desenvolvimento do tubérculo, maior temperatura de colagem antes dos estágios finais de crescimento do tubérculo e menor temperatura de colagem após o estágio intermediário de acúmulo de amido. A análise de trilha mostrou que, após o estágio intermediário de acúmulo de amido, os efeitos na gelatinização do amido de cultivares com alto, médio e baixo teor de amido representaram a atividade da enzima de síntese de amido> acúmulo de amido> distribuição de grânulos de amido> expressão gênica de enzima de síntese de amido; expressão gênica de enzima de síntese de amido > atividade da enzima de síntese de amido> acúmulo de amido> distribuição de grânulos de amido; expressão gênica da enzima de síntese de amido> distribuição de grânulos de amido> atividade de síntese de amido> acúmulo de amido, respectivamente. No estudo, as fases existentes na biossíntese do amido do tubérculo de batata, e a qualidade do amido e seu processo de formação foram diferentes entre as variedades com diferentes teores de amido. As descobertas podem contribuir para a aplicação de amido e as indústrias de batata.


Assuntos
Solanum tuberosum/genética , Solanum tuberosum/química , Expressão Gênica , Amidos e Féculas
3.
J Anim Physiol Anim Nutr (Berl) ; 105 Suppl 1: 76-90, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34622485

RESUMO

The influence of specific thermal energy (STE) applications on extruder preconditioner was evaluated in a dry food for cats. In the first study, six STE applications were tested with mass temperatures of 45°C, 55°C, 65°C, 75°C, 85°C and 95°C. The extrusion parameters, starch gelatinization and kibble formation were evaluated. Diets were given to cats to evaluate digestibility, faecal characteristics and palatability. In the second experiment, three treatments were compared: low STE-a preconditioner temperature of 45°C (L STE); high STE-a preconditioner temperature of 95°C (H STE); high STE (preconditioner temperature of 95°C) combined with an increase in the mass flow rate to obtain a motor amperage similar to that of the L STE (H STEflow ). Data were analysed by polynomial contrasts (Experiment 1) or Tukey's test (Experiment 2; p < 0.05). An increase in STE reduced motor amperage, mass pressure and specific mechanical energy (SME) implementation (p < 0.001) and increased total specific energy (TSE) and mass temperature (p < 0.01). The increase in STE induced greater kibble expansion and starch gelatinization (p < 0.001). No changes in apparent nutrient digestibility or faeces characteristics were observed (p > 0.05). Lower STE and starch gelatinization induced higher butyrate and total volatile fatty acid (VFA) contents in faeces (p < 0.01). Cats showed greatest preference for the formulation with the highest STE (p < 0.01). In the second experiment, when the motor amperage was increased in the H STEflow treatment to a value similar to that of the L STE, the mass flow rate increased 40%, and the electric energy consumption remained unchanged (p < 0.001), with gains observed for efficiency and cost. In conclusion, STE application is important for sufficient TSE implementation, enhancing kibble expansion, starch gelatinization, cat preferences for food, extruder productivity and reducing SME application. Foods with lower starch gelatinization lead to increased VFA in faeces, with possible implications for gut health.


Assuntos
Ração Animal , Digestão , Ração Animal/análise , Animais , Gatos , Dieta/veterinária , Fezes , Amido
4.
Food Chem ; 326: 126972, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422510

RESUMO

Different bread formulations, which provide different dough structures, were studied in order to better understand the effect of wheat flour substitution, flour type and concentration on dough development during baking, and their relationship with physical properties of the final product. Breads were produced with partial substitution of wheat flour by corn (CF), green banana (GF) and rice flour (RF), at different concentrations, and then baked at different times. Wheat flour substitution by CF, GF and RF in bread reduces heat transfer to the dough center by about 21%, 35% and 20%, respectively; and the water loss by about 5%, 15% and 0%, respectively. Those reductions were more influenced by flour type, than flour concentration. When wheat flour is substituted, the mechanisms of water migration are modified, once the pore system of bread dough is more discrete and stiffens later. Calculated thermal conductivity and diffusivity of the different flours used, and its correlations with average composite-bread heating rates (0.93) and water loss (0.85), respectively, indicates that thermal properties of composite bread dough could represent an important issue to be explored in dough systems with reduced gluten concentration.


Assuntos
Pão , Farinha , Musa , Oryza , Zea mays , Glutens/análise , Musa/química , Oryza/química , Temperatura , Triticum/química , Água , Zea mays/química
5.
Food Res Int ; 129: 108884, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036934

RESUMO

The relevance of an appropriate nutrition requires innovation in the design of food ingredients. The goal of this work was to obtain a powdered extract of quinoa by using spray-drying. To this aim, quinoa flour was suspended in water to obtain a soluble fraction mainly composed of proteins, starch, fiber, lipids, antioxidants and minerals. The spray-drying conditions of this quinoa soluble fraction were set-up in terms of inlet temperatures (150, 160, 170 and 180 °C) and feed flow (4.5, 7.5, 10.5 mL/min). The obtained powders were characterized by determining the proximate composition, antioxidant activity, microstructure, fatty acids' profile, and starch and proteins' structures. A correlation among the drying parameters and the chemical and functional attributes of the powders was addressed using principal component analysis. From a technological viewpoint the use of moderate feed flows (7.5 mL/min) and high inlet temperatures (180 °C) was the best combination to obtain high powder yields (85% d.b.), low aw (0.047 ± 0.005) and high solids content (0.956 ± 0.005). The drying temperature positively affected the structure of starch, improving swelling and favoring moderate agglomeration which increases the encapsulation properties of quinoa. These results support the use of spray-drying as a suitable method to obtain powdered extracts of quinoa without affecting the nutritional value, thus supporting their use as functional ingredients in the formulation of ready-to-eat foods.


Assuntos
Chenopodium quinoa/química , Valor Nutritivo , Extratos Vegetais/química , Lipídeos/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Proteínas de Plantas/química , Pós/química , Secagem por Atomização , Propriedades de Superfície
6.
R. bras. Ci. avíc. ; 19(1,n.esp): 23-34, jan.-mar. 2017. tab
Artigo em Inglês | VETINDEX | ID: vti-17004

RESUMO

A feed production trial was conducted to study the effect of synthetic emulsifier and natural biosurfactant the process and quality of pelletized broiler feed. A corn-soy based broiler diet was formulated with fixed ratio 2:1 of oil-to-water with two types of emulsifiers, namely glyceryl polyethylene glycol ricinoleate synthetic emulsifier and lysophosphatidylcholine natural biosurfactant. T1: Basal diet with no water and no emulsifier; T2: Basal diet with water and no emulsifier; T3: Basal diet with water and synthetic emulsifier glyceryl polyethylene glycol ricinoleate; T4: Basal diet with water and a natural biosurfactant lysophosphatidylcholine as comparative treatment. The treatment diets were manufactured by a commercial feed mill. The electricity cost and meal temperature were measured during the process of milling. Composite samples were collected from different processed points, tested for physical properties, chemical stability and biostability of pelletized feed. Pellet quality of emulsifier supplemented diets was significantly (p 0.05) improved in crumble and pellet intact form. Correlation between emulsifier and pelletize processed cost was not observed in this present study. No deteriorate effect was observed in hydrolytic rancidity (AV), oxidation rancidity (PV), mold count, moisture content and water activity. However, percentage of starch gelatinization on pelletized feed was significantly (p 0.0001) improved in both types of emulsifier treated diets. These results demonstrated that the addition of emulsifier to broiler diet improved pellet quality to some extent although significant difference between synthetic emulsifier and natural biosurfactant was not observed. Abbreviations: AV, acid value; PV, peroxide value; amp, ampere; vol, voltage; T/h, tonne per hour; kW, kilowatt; Aw, water activity; PDI, pellet durability index(AU)


Assuntos
Animais , Ração Animal/análise , Ração Animal , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo
7.
Rev. bras. ciênc. avic ; 19(1,n.esp): 23-34, jan.-mar. 2017. tab
Artigo em Inglês | VETINDEX | ID: biblio-1490389

RESUMO

A feed production trial was conducted to study the effect of synthetic emulsifier and natural biosurfactant the process and quality of pelletized broiler feed. A corn-soy based broiler diet was formulated with fixed ratio 2:1 of oil-to-water with two types of emulsifiers, namely glyceryl polyethylene glycol ricinoleate synthetic emulsifier and lysophosphatidylcholine natural biosurfactant. T1: Basal diet with no water and no emulsifier; T2: Basal diet with water and no emulsifier; T3: Basal diet with water and synthetic emulsifier glyceryl polyethylene glycol ricinoleate; T4: Basal diet with water and a natural biosurfactant lysophosphatidylcholine as comparative treatment. The treatment diets were manufactured by a commercial feed mill. The electricity cost and meal temperature were measured during the process of milling. Composite samples were collected from different processed points, tested for physical properties, chemical stability and biostability of pelletized feed. Pellet quality of emulsifier supplemented diets was significantly (p 0.05) improved in crumble and pellet intact form. Correlation between emulsifier and pelletize processed cost was not observed in this present study. No deteriorate effect was observed in hydrolytic rancidity (AV), oxidation rancidity (PV), mold count, moisture content and water activity. However, percentage of starch gelatinization on pelletized feed was significantly (p 0.0001) improved in both types of emulsifier treated diets. These results demonstrated that the addition of emulsifier to broiler diet improved pellet quality to some extent although significant difference between synthetic emulsifier and natural biosurfactant was not observed. Abbreviations: AV, acid value; PV, peroxide value; amp, ampere; vol, voltage; T/h, tonne per hour; kW, kilowatt; Aw, water activity; PDI, pellet durability index


Assuntos
Animais , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Ração Animal , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA