Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220208

RESUMO

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Assuntos
Neoplasias da Mama , Flavonoides , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Chinese Pharmacological Bulletin ; (12): 851-859, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013800

RESUMO

Aim To observe the effect of epimedium on the proliferation and stem cell-like character expression of breast cancer cells, and investigate the relationship between the inhibition of stem cell-like character and miR-148a by epimedium, and its molecular mechanism. Methods After treatment with different concentrations of epimedium, cell viability and population dependence were detected by MTT assay and colony formation assay; the breast cancer stem cell-derived mammosphere formation was examined by Mammosphere assay; the expression levels of CD44,ALDH-1, Oct4,BMIl and EpCAM were detected by qPCR; the protein expression levels of EpCAM, SOX4, ZO-1, E-cadherin and vimentin were detected by Western blot; the protein localization of EpCAM was observed by im-munofluorescence assay; the effect of epimedium on migration was detected by wound healing assay. The miR-148a mimic was transfected into MDA-MB-231 cells, and the effects of epimedium on stem-like character expression of transfected MDA-MB-231 cells were observed. Results Epimedium significantly inhibited the proliferation and population dependence of MDA-MB-231 cells (P < 0.05 ), and reduced the breast cancer stem cell-derived mammosphere formation; compared with control group, epimedium significantly decreased mRNA levels of CD44, ALDH-1, Oct4, BMI1 and EpCAM (P <0.05) ,decreased protein contents of EpCAM, SOX4 and Vimentin (P < 0.05 ), up-regulated the protein expression of ZO-1 and e-cadherin ( P <0.05) ,and decreased the migration ability of MDA-MB-231 cells (P < 0.05). Epimedium up-regulated the expression of miR-148a in MDA-MB-231 cells (P <0.01). YYH + miR-148a mimic group significantly inhibited stem-like character expression and EMT process of breast cancer MDA-MB-231 cells compared with control group (P <0.05). Conclusions Epimedium can inhibit the proliferation of MDA-MB-231 cells, which may be related to the up-regulation of miR-148a, decrease of stem-like character expression of breast cancer cells,and inhibition of EMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...