Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.919
Filtrar
1.
Vet Microbiol ; 298: 110251, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39366317

RESUMO

Copper (Cu) ions have been recognized for their efficacy in inactivating bacteria, including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease (JD) known for its resilience to unfavorable conditions. However, the response of MAP isolates isolated from cows to Cu exposure remains inadequately understood, as their responses may differ from those of laboratory-adapted reference strains. In this study, we examined the response of MAP isolates obtained from MAP-infected and affected cows to Cu ion treatment, comparing that with the response of the reference strain ATCC 19698 to the same treatment. Three MAP field isolates and the MAP reference strain were exposed to Cu ions, and their viability, protein/lipid damage, ROS production, and gene expression were evaluated in triplicate. Survival differed among isolates, with an isolate from a cow with clinical JD exhibiting increased tolerance to Cu exposure. While Cu treatment induced lipid peroxidation and ROS production across all isolates, genes associated with Cu detoxification and virulence were upregulated, particularly in the reference strain. Whole genome sequencing analysis revealed that, despite genomic similarities between field isolates and the reference strain ATCC 19698, there were differences regarding the presence/absence of genes related with certain virulence factors. Further research on Cu exposure with larger numbers of MAP isolates is needed to explain the stress-induced responses that influence MAP survival during natural infections and in challenging environments.

2.
Cell Host Microbe ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39353429

RESUMO

The genetic diversity of the gut microbiota has a central role in host health. Here, we created pangenomes for 728 human gut prokaryotic species, quadrupling the genes of strain-specific genomes. Each of these species has a core set of a thousand genes, differing even between closely related species, and an accessory set of genes unique to the different strains. Functional analysis shows high strain variability associates with sporulation, whereas low variability is linked with antibiotic resistance. We further map the antibiotic resistome across the human gut population and find 237 cases of extreme resistance even to last-resort antibiotics, with a predominance among Enterobacteriaceae. Lastly, the presence of specific genes in the microbiota relates to host age and sex. Our study underscores the genetic complexity of the human gut microbiota, emphasizing its significant implications for host health. The pangenomes and antibiotic resistance map constitute a valuable resource for further research.

3.
J Hosp Infect ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357541

RESUMO

Validation of prion inactivation processes for medical devices relies on in vivo experimental protocols. However, bioassays are costly, long (one to two years) and ethically disputable. Additionally, results obtained with one prion strain, for example 263K (hamster-adapted strain originating from sheep scrapie), cannot be easily extrapolated to relevant human prion strains, further questioning the utility of bioassays. Over the past two decades, cell-free prion amplification assays have emerged as potential alternatives to bioassays. Rather than measuring prion infectivity, they quantify prion seeding activity, i.e. the capacity to convert the normal prion protein into the disease-associated isoform. The results obtained by an optimized cell-free assay termed miniaturized-bead protein misfolding cyclic amplification (mb-PMCA), with four processes using three different prion strains, 263K and two human prions derived from variant and sporadic Creutzfeldt-Jakob diseases, were compared to published bioassays using the same three strains and processes, when available. Tests performed on reference processes (steam, sodium hydroxide, sodium hypochlorite) and low temperature H2O2 sterilization process (STERRAD NXTM Advanced cycle), showed perfect alignment between mb-PMCA and available bioassays. STERRAD NXTM Advanced cycle was efficacious on all three prion strains. These data confirm that PMCA and in particular mb-PMCA is a relevant alternative to animal bioassays for assessment of prion inactivation processes and the interest of some low temperature H2O2 sterilization cycles.

4.
BMC Mol Cell Biol ; 25(1): 21, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367339

RESUMO

BACKGROUND: Bacillus strains are well recognized for their inherent production of bioactive compounds that exhibit antibacterial and anticancer properties. This study aims to evaluate the antimicrobial and anticancer effects of the secondary metabolite isolated from Bacillus licheniformis and Bacillus siamensis strain. MATERIAL AND METHOD: We developed and purified a new soil-derived Bacillus strain to study its metabolites on cancer cells and bacteria. After evaluating the antimicrobial effects of the selected strains' secondary metabolites by well diffusion, growth conditions and temperature optimised using liquid-liquid extraction, secondary metabolites isolated, and active compounds identified using GC-MS. Evaluation of PC-3 and HPrEpC cytotoxicity. AV/PI staining and comet assay assessed necrosis and apoptosis. Real-time PCR measured apoptotic gene expression. Finally, the scratch test measured cell movement. RESULTS: Bacillus strain metabolites exhibit dual-purpose antimicrobial and anticancer properties. Bacillus licheniformis isolate 56 and S2-G12 isolate 60 demonstrated the greatest antibacterial activity. Among all Bacillus isolates, isolates 56 (Bacillus licheniformis) and 60 (Bacillus siamensis strain) had the highest antibacterial activity. Crude extracts obtained from strains 56 and 60 decreased PC-3 cell viability in a dose-dependent manner. At 200 µg/mL, the survival rate of cells treated with strain 56 and 60 crude extract was 23% and 25%, respectively (p < 0.001). The treatment of PC-3 cells with strains 56 and 60 crude extract led to considerable apoptosis (46.2% and 50.09%, respectively) compared to the control group. After treatment with the crude extract from strains 56 and 60 at an IC50 concentration, a significant number of PC-3 cells showed comet formation, indicating DNA fragmentation. Metabolites extracted from strain 56 and 60 enhanced caspase 3, caspase 8, and Bax genes expression and reduced Bcl-2 expression (p < 0.001). Cell migration was also prevented. CONCLUSION: Our findings show that the secondary metabolites of B. licheniformis and B. siamensis have antibiotic and anticancer properties. However in vivo studies are necessary to confirm these findings.


Assuntos
Antibacterianos , Antineoplásicos , Apoptose , Bacillus licheniformis , Bacillus , Microbiologia do Solo , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bacillus licheniformis/metabolismo , Humanos , Bacillus/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Metabolismo Secundário , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos
5.
G3 (Bethesda) ; 14(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39271181

RESUMO

The MiniMUGA genotyping array is a popular tool for genetic quality control of laboratory mice and genotyping samples from most experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve the array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA. Here, we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for classical inbred strains and substrains, and increase the number of constructs reliably detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have updated the layout of the report to simplify the interpretation and completeness of the analysis and added a section summarizing the ideogram in table format. These changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.


Assuntos
Biologia Computacional , Técnicas de Genotipagem , Animais , Camundongos , Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/normas , Biologia Computacional/métodos , Genótipo , Controle de Qualidade , Alelos , Reprodutibilidade dos Testes , Análise de Sequência com Séries de Oligonucleotídeos/métodos
6.
Clin Podiatr Med Surg ; 41(4): 853-864, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39237188

RESUMO

High-resolution ultrasound (US) can be used to assess soft tissue abnormalities in the foot and ankle. Compared to MRI, it has lower cost, is widely available, allows portability and dynamic assessment. US is an excellent method to evaluate foot and ankle tendon injuries, ligament tears, plantar fascia, peripheral nerves, and the different causes of metatarsalgia.


Assuntos
Ultrassonografia , Humanos , Ultrassonografia/métodos , Pé/diagnóstico por imagem , Traumatismos do Tornozelo/diagnóstico por imagem , Traumatismos do Pé/diagnóstico por imagem , Traumatismos dos Tendões/diagnóstico por imagem , Tornozelo/diagnóstico por imagem
7.
Virol Sin ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233140

RESUMO

Influenza B viruses (IBVs) primarily infect humans and are a common cause of respiratory infections in humans. Here, to systematically analyze the antigenicity of the IBVs Hemagglutinin (HA) protein, 31 B/Victoria and 19 B/Yamagata representative circulating strains were selected from Global Initiative of Sharing All Influenza Data (GISAID), and pseudotyped viruses were constructed with the vesicular stomatitis virus system. Guinea pigs were immunized with three doses of vaccines (one dose of DNA vaccines following two doses of pseudotyped virus vaccines) of the seven IBV vaccine strains, and neutralizing antibodies against the pseudotyped viruses were tested. By comparing differences between various vaccine strains, we constructed several pseudotyped viruses that contained various mutations based on vaccine strain BV-21. The vaccine strains showed good neutralization levels against the epidemic virus strains of the same year, with neutralization titers ranging from 370 to 840, while the level of neutralization against viruses prevalent in previous years decreased 1-10-fold. Each of the high-frequency epidemic strains of B/Victoria and B/Yamagata not only induced high neutralizing titers, but also had broadly neutralizing effects against virus strains of different years, with neutralizing titers ranging from 1000 to 7200. R141G, D197N, and R203K were identified as affecting the antigenicity of IBV. In this study, pseudotyped virus system was used to monitor the cross-neutralizing efficacy of high-frequency epidemic strains and vaccine strains recommended by the World Health Organization. Additionally, we identified three mutation sites that can seriously affect the antigenicity of B/Victoria vaccine strains. These mutation sites provide valuable references for the selection and design of a universal IBV vaccine strain in the future.

8.
Gastroenterol Rep (Oxf) ; 12: goae087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286773

RESUMO

Background: Intestinal microcirculation is a critical interface for nutrient exchange and energy transfer, and is essential for maintaining physiological integrity. Our study aimed to elucidate the relationships among intestinal microhemodynamics, genetic background, sex, and microbial composition. Methods: To dissect the microhemodynamic landscape of the BALB/c, C57BL/6J, and KM mouse strains, laser Doppler flowmetry paired with wavelet transform analysis was utilized to determine the amplitude of characteristic oscillatory patterns. Microbial consortia were profiled using 16S rRNA gene sequencing. To augment our investigation, a broad-spectrum antibiotic regimen was administered to these strains to evaluate the impact of gut microbiota depletion on intestinal microhemodynamics. Immunohistochemical analyses were used to quantify platelet endothelial cell adhesion molecule-1 (PECAM-1), estrogen receptor α (ESR1), and estrogen receptor ß (ESR2) expression. Results: Our findings revealed strain-dependent and sex-related disparities in microhemodynamic profiles and characteristic oscillatory behaviors. Significant differences in the gut microbiota contingent upon sex and genetic lineage were observed, with correlational analyses indicating an influence of the microbiota on microhemodynamic parameters. Following antibiotic treatment, distinct changes in blood perfusion levels and velocities were observed, including a reduction in female C57BL/6J mice and a general decrease in perfusion velocity. Enhanced erythrocyte aggregation and modulated endothelial function post-antibiotic treatment indicated that a systemic response to microbiota depletion impacted cardiac amplitude. Immunohistochemical data revealed strain-specific and sex-specific PECAM-1 and ESR1 expression patterns that aligned with observed intestinal microhemodynamic changes. Conclusions: This study highlights the influence of both genetic and sex-specific factors on intestinal microhemodynamics and the gut microbiota in mice. These findings also emphasize a substantial correlation between intestinal microhemodynamics and the compositional dynamics of the gut bacterial community.

9.
Sci Total Environ ; 952: 175953, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226954

RESUMO

Aerobic composting has been used as a mainstream treatment technology for agricultural solid waste resourcing. In the present study, we investigated the effects and potential mechanisms of the addition of a microbial agent (LD) prepared by combining Bacillus subtilis, Bacillus paralicheniformis and Irpex lacteus in improving the efficiency of cattle manure composting. Our results showed that addition of 1.5 % LD significantly accelerated compost humification, i.e., the germination index and lignocellulose degradation rate of the final compost product reached values of 92.20 and 42.29 %, respectively. Metagenomic sequencing results showed that inoculation of cattle manure with LD increased the abundance of functional microorganisms. LD effectively promoted the production of humus precursors, which then underwent reactions through synergistic abiotic and biotic pathways to achieve compost humification. This research provides a theoretical basis for the study of microbial enhancement strategies and humus formation mechanisms in the composting of livestock manure.


Assuntos
Compostagem , Esterco , Esterco/microbiologia , Animais , Bovinos , Microbiota , Microbiologia do Solo , Bacillus/fisiologia
10.
Front Pharmacol ; 15: 1430238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253373

RESUMO

Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.

11.
Rice (N Y) ; 17(1): 60, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259231

RESUMO

This study demonstrated the plant growth-promoting capabilities of native actinobacterial strains obtained from different regions of the rice plant, including the rhizosphere (FT1, FTSA2, FB2, and FH7) and endosphere (EB6). We delved into the molecular mechanisms underlying the beneficial effects of these plant-microbe interactions by conducting a transcriptional analysis of a select group of key genes involved in phytohormone pathways. Through in vitro screening for various plant growth-promoting (PGP) traits, all tested isolates exhibited positive traits for indole-3-acetic acid synthesis and siderophore production, with FT1 being the sole producer of hydrogen cyanide (HCN). All isolates were identified as members of the Streptomyces genus through 16S rRNA amplification. In pot culture experiments, rice seeds inoculated with strains FB2 and FTSA2 exhibited significant increases in shoot dry mass by 7% and 34%, respectively, and total biomass by 8% and 30%, respectively. All strains led to increased leaf nitrogen levels, with FTSA2 demonstrating the highest increase (4.3%). On the contrary, strains FB2 and FT1 increased root length, root weight ratio, root volume, and root surface area, leading to higher root nitrogen content. All isolates, except for FB2, enhanced total chlorophyll and carotenoid levels. Additionally, qRT-PCR analysis supported these findings, revealing differential gene expression in auxin (OsAUX1, OsIAA1, OsYUCCA1, OsYUCCA3), gibberellin (OsGID1, OsGA20ox-1), and cytokinin (OsIPT3, OsIPT5) pathways in response to specific actinobacterial treatments. These actinobacterial strains, which enhance both aboveground and belowground crop characteristics, warrant further evaluation in field trials, either as individual strains or in consortia. This could lead to the development of commercial bioinoculants for use in integrated nutrient management practices.

12.
Foods ; 13(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39272622

RESUMO

The effects of single- (Lactobacillus fermentum) or mixed-strain (Lactobacillus fermentum, Kluyveromyces marxianus) fermentation of red bean with or without wheat bran on sourdough bread quality and nutritional aspects were investigated. The results showed that, compared to unfermented controls, the tannins, phytic acid, and trypsin inhibitor levels were significantly reduced, whereas the phytochemical (TPC, TFC, and gallic acid) and soluble dietary fiber were increased in sourdough. Meanwhile, more outstanding changes were obtained in sourdough following a mixed-strain than single-strain fermentation, which might be associated with its corresponding ß-glucosidase, feruloyl esterase, and phytase activities. An increased specific volume, reduced crumb firmness, and greater sensory evaluation of bread was achieved after mixed-strain fermentation. Moreover, diets containing sourdough, especially those prepared with mixed-strain-fermented red bean with wheat bran, significantly decreased serum pro-inflammatory cytokines levels, and improved the lipid profile, HDL/LDL ratio, glucose tolerance, and insulin sensitivity of mice. Moreover, gut microbiota diversity increased towards beneficial genera (e.g., Bifidobacterium), accompanied with a greater increase in short-chain fatty acid production in mice fed on sourdough-based bread diets compared to their controls and white bread. In conclusion, mixed-strain fermentation's synergistic effect on high fiber-legume substrate improved the baking, sensory quality, and prebiotic effect of bread, leading to potential health benefits in mice.

13.
Bioorg Chem ; 153: 107790, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39241582

RESUMO

Commelina communis L., a functional food and herbal plant in Asia, has been used against obesity, diabetes, and infections for centuries. A growing body of studies has demonstrated that indigestible polysaccharides are significant in obesity management. However, the structures and bioactivities of homogeneous polysaccharides from C. communis remain unclear. This study presented the structural characterization, simulated digestion, and human gut Bacteroides proliferation promotion activity of a novel homogeneous polysaccharide (CCB-3) from C. communis. The results showed that CCB-3 was an arabinoglucuronoxylan, primarily composed of arabinose, galactose, xylose, glucuronic acid (GlcA), and 4-O-methyl GlcA with a molecular weight (Mw) of 58.8 kDa. Following a 6-hour exposure to simulated gastrointestinal fluid, the Mw of CCB-3 remained unchanged, revealing that CCB-3 was an indigestible polysaccharide. Notably, CCB-3 could promote the proliferation of B. thetaiotaomicron, B. ovatus, and B. cellulosilyticus and produce short-chain fatty acids (SCFAs) and 1,2-propanediol. These findings might shed light on the discovery of polysaccharide-based leading compounds from C. communis against obesity.

14.
Emerg Microbes Infect ; 13(1): 2404156, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39258419

RESUMO

African swine fever virus (ASFV) recombinant strains pose new challenges for diagnosis and control. This study characterizes genotype I and II recombinant ASFV strains identified in northern Vietnam in 2023 through whole-genome sequencing and comparative genomic analysis. Seven ASFV-positive samples from six provinces were analyzed, with recombinant strains detected in Bac Giang, Phu Tho, and Vinh Phuc provinces. Isolates showed hemadsorption positivity despite having genotype I B646L, indicating their recombinant nature. Genome-wide analysis revealed 19 recombination breakpoints consistent with Chinese recombinant strains. Vietnamese isolates shared 99.86-99.98% nucleotide identity with Chinese recombinants, forming a distinct monophyletic group. Comparative analysis identified 50 SNPs and INDELs, with 39 variations found across Vietnamese strains, distinguishing them from Chinese isolates. Unique genetic markers in C962R, I329L, and MGF 505-11L genes distinguished Vietnamese recombinants from Chinese counterparts, while mutations in C122R and NP1450L differentiated all recombinants from parental genotypes. The central variable region (CVR) of the B602L gene showed diversity among Vietnamese isolates, while the I73R-I329L intergenic regions were recognized as in the IGR2 group. This study enhances understanding of recombinant ASFV evolution through homologous recombination and identifies new genetic markers for improved detection and characterization. The observed genetic diversity highlights challenges for existing diagnostic methods and vaccine development, emphasizing the need for continued surveillance and research into the functional implications of these genetic variations on ASFV pathogenicity and transmissibility.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genoma Viral , Genótipo , Filogenia , Recombinação Genética , Sequenciamento Completo do Genoma , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/classificação , Vietnã/epidemiologia , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/epidemiologia , Sequenciamento Completo do Genoma/métodos , Variação Genética
15.
Bull Exp Biol Med ; 177(4): 465-469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39264563

RESUMO

Two bacteriophages specifically active against to pathogenic strains of the Salmonella genus were isolated. The morphology of phage colonies (size, transparency, and shape of the plaque edge, and halo) and the spectrum of their lytic activity and interaction with microbial cells (adsorption rate, duration of the latency, and reproductive efficiency) were examined. Using genome-wide sequencing, we determined the taxonomic position of bacteriophages and verified the absence of unwanted genes encoding toxins, adhesins, and invasins, as well as pathogenicity islands responsible for antibiotic resistance. In addition, phage stability under different physical conditions and their productivity were studied.


Assuntos
Terapia por Fagos , Fagos de Salmonella , Fagos de Salmonella/genética , Fagos de Salmonella/isolamento & purificação , Humanos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/terapia , Infecções por Salmonella/tratamento farmacológico , Salmonella/virologia , Salmonella/efeitos dos fármacos , Salmonella/genética , Genoma Viral/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética
16.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 2797-2811, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319708

RESUMO

Bacterial cellulose (BC) is the glucose polymer produced by bacterial metabolism. The bacterial cellulose synthase (BCS) is the key enzyme for catalyzing the formation of BC. The cooperation between different submits of BCS is necessary for the intracellular formation and extracellular secretion of BC. This review summarized the BC-producing strains and the differences of BCS among different strains. Furthermore, we detailed the BC synthesis mechanism, the interactions between BCS subunits, and the relationship between the structural characteristics of strains and the formation of highly ordered fiber structures. A comprehensive insight into the mechanism of BC synthesis and secretion will supply more strategies for optimizing the BC synthesis via methods of synthetic biology.


Assuntos
Celulose , Glucosiltransferases , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Celulose/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química
17.
J Funct Biomater ; 15(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39330235

RESUMO

Clinical indications for the Ti-Zr alloy (Roxolid®) mini-implants (MDIs) in subjects with narrow ridges are still under review. The aim was to analyze peri-implant and posterior edentulous area strains dependent on the MDI number, splinting status, loading force, and loading position. Six models were digitally designed and printed. Two, three, or four Ti-Zr MDIs, splinted with a bar or unsplinted (single units), supported mandibular overdentures (ODs), loaded with 50-300 N forces unilaterally, bilaterally, and anteriorly. The artificial mucosa thickness was 2 mm. Strain gauges were bonded on the vestibular and oral peri-implant sides of each MDI, and on the posterior edentulous area under the ODs. Loadings were performed through the metal plate placed on ODs' artificial teeth (15 times repeated). Arithmetic means with standard deviations and the significance of the differences (MANOVA, Sheffe post hoc) were calculated. Different MDI numbers, loading positions, forces, and splinting elicited different peri-implant microstrains. In the two-MDI models, 300 N force during unilateral loading elicited the highest microstrains (almost 3000 εµ on the loaded side), which can jeopardize bone reparation. On the opposite side, >2500 εµ was registered, which represents high strains. During bilateral loadings, microstrains hardly exceeded 2000 εµ, indicating that bilateral chewers or subjects having lower forces can benefit from the two Ti-Zr MDIs, irrespective of splinting. However, in subjects chewing unilaterally, and inducing higher forces (natural teeth antagonists), or bruxers, only two MDIs may not be sufficient to support the OD. By increasing implant numbers, peri-implant strains decrease in both splinted and single-unit MDI models, far beyond values that can interfere with bone reparation, indicating that splinting is not necessary. When the positions of the loading forces are closer to the implant, higher peri-implant strains are induced. Regarding the distal edentulous area, microstrains reached 2000 εµ only during unilateral loadings in the two-MDI models, and all other strains were lower, below 1500 εµ, confirming that implant-supported overdentures do not lead to edentulous ridge atrophy.

18.
Int J Biol Macromol ; : 136092, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349088

RESUMO

Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L. delbrueckii ssp. bulgaricus and LAB from clover silage (L. fermentum AG8, L. plantarum AG9) after growth on Man, Rogosa, and Sharpe broth (MRS) and with the addition of flaxseed mucilage (FSM) using chromatography, microscopy, and biochemical methods. We found that adding 0.4 % FSM does not drastically alter the medium's rheology but substantially increases EPS yield (by 3.1 to 3.8 times) and modifies the composition and macrostructure of EPS, as well as changes the spatial organization of LAB cells. The presence of FSM led to the production of xylose- and glucose-enriched EPS, which also contained varying proportions of fucose, rhamnose, arabinose, mannose, glycosamines, and uronic acids, depending on the strain. Most EPS had a low molecular weight (up to 32 kDa), except for EPS produced by L. fermentum AG8 in FSM-containing medium, which had molecular weight of 163 kDa. All EPS exhibited a porous microstructure and demonstrated scavenging capacity for OH- and DPPH-radicals, as well as high levels of α-glucosidase and lipase inhibitory activities, even at low concentrations (<1 g∙L-1 of EPS). These characteristics make them promising for use in functional food production and medicine.

19.
Materials (Basel) ; 17(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336410

RESUMO

This work aims at the determination of the coefficient of thermal expansion (CTE) of parts manufactured through the Fused Deposition Modeling process, employing fiber Bragg grating (FBG) sensors. Pure thermoplastic and composite specimens were built using different commercially available filament materials, including acrylonitrile butadiene styrene, polylactic acid, polyamide, polyether-block-amide (PEBA) and chopped carbon fiber-reinforced polyamide (CF-PA) composite. During the building process, the FBGs were embedded into the middle-plane of the test specimens, featuring 0° and 90° raster printing orientations. The samples were then subjected to thermal loading for measuring the thermally induced strains as a function of applied temperature and, consequently, the test samples' CTE and glass transition temperature (Tg) based on the recorded FBG wavelengths. Additionally, the integrated FBGs were used for the characterization of the residual strain magnitudes both at the end of the 3D printing process and at the end of each of the two consecutively applied thermal cycles. The results indicate that, among all tested materials, the CF-PA/0° specimens exhibited the lowest CTE value of 14 × 10-6/°C. The PEBA material was proven to have the most isotropic thermal response for both examined raster orientations, 0° and 90°, with CTE values of 117 × 10-6/°C and 108 × 10-6/°C, respectively, while similar residual strains were also calculated in both printing orientations. It is presented that the followed FBG-based methodology is proven to be an excellent alternative experimental technique for the CTE characterization of materials used in 3D printing.

20.
Microorganisms ; 12(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39338506

RESUMO

Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow's milk, offering a promising solution to help meet dairy product demand during mid-season shortages. Therefore, this study aimed to explore the physicochemical characteristics, sensory properties, and microbiological profile of fermented milk-like drinks made from white kidney bean extract, cow's milk and their blends during 28 days of storage at 4 °C. Three blends of fermented milk-like drinks (FMLDs) were prepared from different ratios of cow's milk (CM) and kidney bean extract (BE): FMLD1 (CM 30%:BE 70%); FMLD2 (CM 50%:BE 50%), FMLD3 (CM 70%:BE 30%), along with plain fermented kidney been extract (FBE; CM 0%:BE 100%), and plain fermented cow's milk (FCM; CM 100%:BE 0%). The mixtures were pasteurized at 92 °C for 25 min and fermented with a probiotic-type starter culture (S. thermophilus, B. bifidum, L. acidophilus) at 43 °C. FBE exhibited the lowest levels of carbohydrates (2.14%), fat (0.11%), and protein (1.45%) compared to fermented cow's milk and blends. The FBE and the fermented blends with a higher ratio of bean extract had lower viscosity and lactic acid contents, greener hue, more pronounced aftertaste and off-flavors, and received lower overall acceptability scores. Although the FCM had higher counts of S. thermophilus and L. acidophilus, the FBE displayed significantly higher counts of B. bifidum. This study demonstrated the potential of using white kidney bean extract and its blends with cow's milk to create unique fermented products with a lower dietary impact, highlighting the importance of further optimizing the formulations to enhance sensory qualities and reduce the beany off-flavors in the products with added kidney bean extract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA