RESUMO
Intestinal homeostasis encompasses a complex and balanced interplay among a wide array of components that collaborate to maintain gut barrier integrity. The appropriate function of the gut barrier requires the mucus layer, a sticky cushion of mucopolysaccharides that overlays the epithelial cell surface. Mucus plays a critical anti-inflammatory role by preventing direct contact between luminal microbiota and the surface of the epithelial cell monolayer. Moreover, mucus is enriched with pivotal effectors of intestinal immunity, such as immunoglobulin A (IgA). A fragile and delicate equilibrium that supports proper barrier function can be disturbed by stress. The impact of stress upon intestinal homeostasis results from neuroendocrine mediators of the brain-gut axis (BGA), which comprises a nervous branch that includes the enteric nervous system (ENS) and the sympathetic and parasympathetic nervous systems, as well as an endocrine branch of the hypothalamic-pituitary-adrenal axis. This review is the first to discuss the experimental animal models that address the impact of stress on components of intestinal homeostasis, with special emphasis on intestinal mucus and IgA. Basic knowledge from animal models provides the foundations of pharmacologic and immunological interventions to control disturbances associated with conditions that are exacerbated by emotional stress, such as irritable bowel syndrome.
Assuntos
Imunoglobulina G/metabolismo , Mucosa Intestinal/imunologia , Estresse Psicológico/imunologia , Animais , Homeostase , Humanos , Muco/imunologiaRESUMO
The present study investigated the hormonal and neural responses to stress in a perimenopause animal model induced by 4-vinylcyclohexene diepoxide (VCD), which induces progressive follicular depletion in rodents, allowing studies on the transition to ovarian failure. Female rats, aged 28 days old, were s.c. injected for 15 consecutive days with corn oil or VCD. At 85 ± 5 days after the onset of treatment, the jugular vein was cannulated in the afternoon of metoestrus and in next morning (dioestrus) at 10.00 am, rats were subjected to 30 minutes of restraint stress. Blood samples were withdrawn before (-5 minutes), during (2, 5, 15 and 30 minutes) and after (45, 60 and 90 minutes) stress and plasma prolactin, progesterone and corticosterone levels were measured. Animals were perfused, brains processed for c-Fos/tyrosine hydroxylase (TH) in the locus coeruleus (LC) and c-Fos/corticotrophin-releasing factor (CRF) in the paraventricular nucleus (PVN). In unstressed rats the density of ß-endorphin fibres was assessed in LC and PVN. In VCD-treated rats, stress-induced prolactin peak was higher, basal and peak progesterone levels were lower, and both levels of corticosterone were similar to controls. However, the recovery period was longer for both adrenal hormones. In VCD-treated rats the number of c-Fos/TH and c-Fos/CRF-immunoreactive neurones was higher whereas the density of ß-endorphin fibres was lower in LC and PVN. We surmise that the hyperactivity of the LC and PVN neurones in VCD-treated rats may be a result of the lower progesterone levels that resulted in the decrease of ß-endorphin content in both nuclei, thus impairing the negative-feedback mechanism in the recovery period.
RESUMO
The coronavirus disease 2019 (COVID-19) outbreak was first reported December 2019, in Wuhan, China, and has since spread worldwide. Social distancing or isolation measures were taken to mitigate the pandemic. Furthermore, stress and low socioeconomic status in humans confer increased vulnerability to morbidity and mortality, what can be biologically observed. This condition tends to remain during the Covid-19 pandemic. Social disruption stress (SDR) raises important questions regarding the functioning of the immune system, and the release of several stress hormones. A molecular pattern, conserved transcriptional response to adversity (CTRA), is thought to have evolved to defend against physical injury during periods of heightened risk. Chronic CTRA activation could leave an organism vulnerable to viral infections, leading to increased pro-inflammatory gene expression and a suppression of anti-viral gene expression. The activation of such transcriptional status is related to conditions of social stress through either hostile human contact, or increased predatory vulnerability due to separation from the social group and also low socioeconomic status. This review aims to point out questions for government officials, researchers and health professionals to better target their actions during a pandemic and encourage studies for a better understanding of these characteristics.
RESUMO
There is accumulating evidence of dietary impact on several metabolic parameters. Unhealthy diets are estimated to be responsible for about 20% of the deaths worldwide. The recommendation is to improve the dietary pattern, aiming to prevent further harm. In this context, we reviewed the benefits and barriers of withdrawing from continuous obesogenic diet intake in the short- and long-term, which were found in rodent models. Although dietary modifications demand a re-establishment of the equilibrium, withdrawing was seen as a homeostatic insult and thus elicited several responses to protect the organism. In the short-term, withdrawal presented stressful and reward destimulating responses. The intake of obesogenic diets presented rewarding and stress destimulating responses. Whereas withdrawing in the long term ameliorated several biological functions and histopathologic features, it was not effective at reestablishing food intake and normalizing feeding behaviors or reward pathways. Altogether, terminating obesogenic diet intake does not immediately extinguish all negative consequences, and it even elicits brain behavioral and metabolic modifications. These modifications can hinder the maintenance of habits' change and prevent reaching the long-term benefits of diet improvement.
Assuntos
Dieta/efeitos adversos , Obesidade/prevenção & controle , Animais , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Humanos , Camundongos , Obesidade/psicologia , RatosRESUMO
OBJECTIVE: To evaluate the relationship between the inflammatory profile and mood states in the different phases of the menstrual cycle in soccer players with and without premenstrual syndrome (PMS). METHODS: Data on the menstrual cycle and mood states were collected using the Daily Symptom Report and the Brunel Mood Scale. Cytokine and stress hormone concentrations were measured in urine by flow cytometry before and after a game in the luteal phase and in the follicular phase of one menstrual cycle. RESULTS: In all, 59.6% of the athletes had PMS. The PMS group showed higher concentrations of interleukin (IL)-1ß, IL-6, and IL-8 than the athletes without PMS. After the game, IL-6 decreased in the follicular phase and the luteal phase. The tumor necrosis factor-α levels were higher in the group without PMS during the post-game follicular phase than before the game. In the PMS group, tension was higher in the follicular phase before the game and depression was higher in the pre-game luteal phase than in the group without PMS. The PMS group also presented a negative correlation between depression and IL-10 levels in the pre-game follicular phase. Finally, in the pre-game luteal phase were found positive correlations between growth hormone and IL-10. CONCLUSION: PMS influences the inflammatory condition related to mood states and stress hormones in female soccer players.
Assuntos
Afeto , Ansiedade/psicologia , Citocinas/imunologia , Depressão/psicologia , Inflamação/imunologia , Síndrome Pré-Menstrual/imunologia , Síndrome Pré-Menstrual/psicologia , Futebol , Adolescente , Ansiedade/imunologia , Ansiedade/urina , Atletas , Citocinas/urina , Depressão/imunologia , Depressão/urina , Feminino , Fase Folicular/psicologia , Fase Folicular/urina , Hormônio do Crescimento Humano/urina , Humanos , Inflamação/urina , Interleucina-1beta/imunologia , Interleucina-1beta/urina , Interleucina-6/imunologia , Interleucina-6/urina , Interleucina-8/imunologia , Interleucina-8/urina , Fase Luteal/psicologia , Fase Luteal/urina , Síndrome Pré-Menstrual/urina , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/urina , Adulto JovemRESUMO
Evidence show that stress hormones can influence cancer progression, but its role in carcinogenesis is poorly understood. In this study, we used a new method based on oral carcinogenesis model in rats to test the hypothesis that physiological levels of stress hormones in the normal tissue microenvironment would have significant predictive value for chemically induced cancer occurrence. Male Wistar rats were submitted to a tongue biopsy for measuring not-stress induced levels of norepinephrine, corticosterone, adrenocorticotropic hormone (ACTH) and brain-derived neurotrophic factor (BDNF) in the tissue before carcinogenic induction. Rats were treated with the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogen for twenty weeks and then euthanized for microscopic evaluation of the tongue lesions. Increased pre-carcinogen norepinephrine concentrations and reduced basal corticosterone levels in the normal tissue microenvironment were predictive for oral squamous cell carcinoma (OSCC) occurrence. Likewise, increased pre-carcinogen norepinephrine levels in the normal microenvironment were associated a lower expression of pCDKN2a-p16 in OSCCs. Post-carcinogen levels of corticosterone and BDNF in oral leukoplakia tissues (precursor lesion of OSCC) and post-carcinogen corticosterone concentrations in OSCCs were higher than basal levels in the normal mucosa. Increased norepinephrine concentrations in OSCCs were associated to a greater tumor volume and thickness. Furthermore, higher levels of norepinephrine, ACTH and BDNF in OSCCs were associated to a lesser intensity of the lymphoplasmocytic infiltrate. This study shows that pre-carcinogen stress hormones levels in the normal microenvironment may be predictive for chemically induced cancer in rats. Moreover, chemical carcinogenesis can promote stressor-like effects with hormonal changes in the tissue microenvironment, which may be associated to tumor progression.
Assuntos
Hormônios/metabolismo , Neoplasias da Língua/metabolismo , Língua/metabolismo , 4-Nitroquinolina-1-Óxido/farmacologia , Hormônio Adrenocorticotrópico , Animais , Biomarcadores Tumorais , Fator Neurotrófico Derivado do Encéfalo , Carcinogênese/metabolismo , Carcinógenos , Microambiente Celular/fisiologia , Corticosterona , Modelos Animais de Doenças , Masculino , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Norepinefrina , Ratos , Ratos Wistar , Fatores de Risco , Neoplasias da Língua/induzido quimicamenteRESUMO
Birds are renowned for exhibiting marked sex-specific differences in activity levels and reproductive investment during the breeding season, potentially impacting circulating blood parameters associated with stress and energetics. Males of many passerines often do not incubate, but they experience direct exposure to intruder threat and exhibit aggressive behaviour during the nesting phase in order to defend territories against competing males and predators. Nesting females often have long bouts of inactivity during incubation, but they must remain vigilant of the risks posed by predators and conspecific intruders approaching the nest. Here, we use 33 free-living male (nâ¯=â¯16) and female (nâ¯=â¯17) Darwin's small ground finches (Geospiza fuliginosa) on Floreana Island (Galapagos Archipelago) to better understand how sex-specific roles during the reproductive period impact baseline and stress-induced levels of plasma corticosterone (CORT), blood glucose and haematocrit. Specifically, we hypothesise that males are characterised by higher baseline values given their direct and relatively frequent exposure to intruder threat, but that a standardised stress event (capture and holding) overrides any sex-specific differences. In contrast with expectations, baseline levels of all blood parameters were similar between sexes (13.4⯱â¯1.9â¯ngâ¯ml-1 for CORT, 13.7⯱â¯0.4â¯mmolâ¯l-1 for glucose, 58.3⯱â¯0.8% for haematocrit). Interestingly, females with higher body condition had lower baseline haematocrit. All blood parameters changed with time since capture (range 1.2-41.3â¯min) in both sexes, whereby CORT increased linearly, haematocrit decreased linearly, and glucose increased to a peak at â¼20â¯min post-capture and declined to baseline levels thereafter. Our results do not support the hypothesis that sex-specific roles during the reproductive period translate to differences in blood parameters associated with stress and energetics, but we found some evidence that blood oxygen transport capacity may decline as finches increase in body condition.
Assuntos
Corticosterona/sangue , Tentilhões/crescimento & desenvolvimento , Animais , Equador , Feminino , MasculinoRESUMO
Intermittent fasting prolongs the lifespan and unlike intense stress provides health benefits. Given the role of the immunoglobulin A (IgA) in the intestinal homeostasis, the aim of this study was to assess the impact of intermittent fasting plus intense stress on secretory IgA (SIgA) production and other mucosal parameters in the duodenum and ileum. Two groups of six mice, with intermittent fasting or fed ad libitum for 12weeks, were submitted to a session of intense stress by a bout of forced swimming. Unstressed ad libitum fed or intermittently fasted groups were included as controls. After sacrifice, we evaluated intestinal SIgA and plasma adrenal hormones, lamina propria IgA+ plasma-cells, mRNA expression of polymeric immunoglobulin receptor, α- and J-chains in the liver and intestinal mucosa, as well as pro- (tumor necrosis factor-α, interleukin-6 and Interferon-γ) and anti- (interleukin-2, -4, -10 and transforming growth factor-ß) inflammatory cytokines in mucosal samples. Under intense stress, intermittent fasting down- or up-modulated the levels of most parameters in the duodenum and ileum, respectively while up-regulated corticosterone levels without affecting epinephrine. Our data suggest intermittent fasting plus intense stress elicited neuroendocrine pathways that differentially controlled IgA and pIgR expression in duodenum and ileum. These findings provide experimental foundations for a presumable impact of intermittent fasting under intense stress on the intestinal homeostasis or inflammation by triggering or reducing the IgA production in ileum or duodenum respectively.
Assuntos
Modelos Animais de Doenças , Duodeno/metabolismo , Jejum/metabolismo , Íleo/metabolismo , Imunoglobulina A/biossíntese , Estresse Psicológico/metabolismo , Animais , Jejum/psicologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Psicológico/psicologia , Fatores de TempoRESUMO
Human disturbance is an important stress factor with potentially strong impact on breeding activity in animals. The consequences can be extinction of the breeding population, because disturbed animals might desert their breeding area and find no suitable substitute area. In this study, we investigated the effects of anthropogenic disturbance on a breeding population of Mediterranean storm petrels. Seabirds are increasingly used as bio-indicators for sea environmental parameters, because they are very sensitive to changing conditions. Burrowing or cave-nesting species may be particularly susceptible to human disturbance because their direct contact with humans is usually minimal or absent. First, we compared two different populations (exposed or not exposed to human disturbance) for their individual stress response to a standardized stressor (handling and keeping in a cloth bag). Second, we compared the two sub-colonies for their population-level stress response. Third, we tested experimentally whether sub-colonies of storm petrels exposed to tourism have physiological adaptations to anthropogenic disturbances. Our results indicate that storm petrels may be habituated to moderate disturbance associated with boat traffic close to the colony.
RESUMO
This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR). Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.
Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR). La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a) la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b) la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la diferenciación celular y las respuestas metabólicas e inflamatorias. Así, la desregulación de la función del GR resulta en graves defectos en el mantenimiento de la homeostasis y el control de la adaptación al estrés.
Assuntos
Humanos , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Expressão Gênica/fisiologia , Glucocorticoides/genética , Receptores de Glucocorticoides/genética , Ativação Transcricional , Fatores de Transcrição/metabolismoRESUMO
This review article focuses on the differential activation of the hypothalamic-pituitary-adrenal (HPA) axis in generalized anxiety and panic. The results of experimental studies that assayed adrenocorticotropic hormone, cortisol and prolactin show that real-life panic attacks as well as those induced by selective panicogenic agents, such as lactate and carbon dioxide, do not activate the HPA axis. Accordingly, experiments carried out in two animal models of panic, namely electrical stimulation of the dorsal periaqueductal gray matter of the rat and the escape from the open arm of the elevated T maze, have shown that in neither case stress hormones are increased in the plasma. Also in humans, reported results have shown that neither cortisol nor prolactin levels were increased following simulated public speaking, an experimental task that has been related to panic, in either healthy volunteers or patients with panic disorder diagnosis. Therefore, although the panic attack causes a major sympathetic stimulation, it has little effect on the HPA axis. In contrast, anticipatory or generalized anxiety activates both the HPA and the sympatho-adrenal axes.(AU)
Assuntos
Hormônios , Estresse Psicológico , Ansiedade , Pânico , Substância Cinzenta Periaquedutal , NeurobiologiaRESUMO
This review article focuses on the differential activation of the hypothalamic-pituitary-adrenal (HPA) axis in generalized anxiety and panic. The results of experimental studies that assayed adrenocorticotropic hormone, cortisol and prolactin show that real-life panic attacks as well as those induced by selective panicogenic agents, such as lactate and carbon dioxide, do not activate the HPA axis. Accordingly, experiments carried out in two animal models of panic, namely electrical stimulation of the dorsal periaqueductal gray matter of the rat and the escape from the open arm of the elevated T maze, have shown that in neither case stress hormones are increased in the plasma. Also in humans, reported results have shown that neither cortisol nor prolactin levels were increased following simulated public speaking, an experimental task that has been related to panic, in either healthy volunteers or patients with panic disorder diagnosis. Therefore, although the panic attack causes a major sympathetic stimulation, it has little effect on the HPA axis. In contrast, anticipatory or generalized anxiety activates both the HPA and the sympatho-adrenal axes.