RESUMO
There is increasing interest in research of secondary metabolites from Physalis peruviana (Cape gooseberry) because of their potential bioactivities. In this study, the profile of compounds found in fruits and husks from Costa Rica was determined through ultra-performance liquid chromatography coupled with high-resolution mass spectrometry using a quadrupole time-of-flight analyzer (UPLC-ESI-QTOF MS) on extracts (n = 10) obtained through pressurized liquid extraction (PLE) conditions. In total, 66 different compounds were identified, comprising 34 withanolides, 23 sucrose ester derivatives and 9 flavonoids. UPLC-DAD analysis was performed to determine the ß-carotene in fruits and to quantify the flavonoids in all 10 samples, with the results showing higher contents in samples from the Dota region (58.6−60.1 µg/g of dry material versus 1.6−2.8 mg/g of dry material). The Folin−Ciocalteau total polyphenolic content (FC) and antioxidant activity using the DPPH method showed better results for the husk extracts, with the ones from the Dota region holding the best values (4.3−5.1 mg GAE/g of dry material versus IC50 = 1.6−2.3 mg of dry material/mL). In addition, a significant negative correlation was found between the RU, FC and DPPH values (r = −0.902, p < 0.05), aligning with previous reports on the role of polyphenols in antioxidant activity. Principal correlation analysis (PCoA) and hierarchical clustering (HC) analysis were performed on HRMS results, and they indicated that the D1 and D2 fruit samples from the Dota region were clustered with husks related to a higher presence of the analyzed metabolites. In turn, principal component analysis (PCA) performed on the flavonoid content and antioxidant activity yielded results indicating that the D1 and D2 husks and fruit samples from the Dota region stood out significantly, showing the highest antioxidant activity. In summation, our findings suggest that P. peruviana husks and fruits from Costa Rica constitute a substrate of interest for further studies on their potential health benefits.
Assuntos
Physalis , Ribes , Antioxidantes/química , Costa Rica , Flavonoides/química , Frutas/química , Physalis/química , Extratos Vegetais/químicaRESUMO
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1ß, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1ß, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases.